ChemicalBook >> CAS DataBase List >>Iodomethane

Iodomethane

CAS No.
74-88-4
Chemical Name:
Iodomethane
Synonyms
CH3I;METHYL IODIDE;Methyl iodine;Methyliodid;Methane, iodo-;Methyliodide,99%;Iodomethane,99.5%;METHYLIODIDE,REAGENT;iodomethane solution;IODOMETHANESYNONYMS/METHYLIODIDE
CBNumber:
CB9326765
Molecular Formula:
CH3I
Lewis structure
ch3i lewis structure
Molecular Weight:
141.94
MDL Number:
MFCD00001073
MOL File:
74-88-4.mol
MSDS File:
SDS
Last updated:2024-12-18 14:15:30

Iodomethane Properties

Melting point −64(lit.)
Boiling point 41-43 °C
Density 2.28 g/mL at 25 °C(lit.)
vapor density 4.89 (vs air)
vapor pressure 24.09 psi ( 55 °C)
refractive index n20/D 1.530
Flash point −18 °F
storage temp. 2-8°C
solubility water: soluble14g/L at 20°C
form Liquid
Specific Gravity 2.280
color Clear
Odor Sweet, ethereal odor
PH 5.2 (H2O, 25℃)
Water Solubility 14 g/L (20 ºC)
Sensitive Light Sensitive
Merck 14,6087
BRN 969135
Henry's Law Constant 5.06 at 21 °C (Gan and Yates, 1996)
Exposure limits TLV-TWA 2 ppm (~11 mg/m3) (ACGIH), 5 ppm (MSHA and OSHA); carcinogenicity: Animal Limited Evidence (IARC), Suspected Human Carcinogen.
Dielectric constant 7.0(20℃)
Stability Light Sensitive
LogP 1.510
CAS DataBase Reference 74-88-4(CAS DataBase Reference)
EWG's Food Scores 5
FDA UNII DAT010ZJSR
Proposition 65 List Methyl Iodide
IARC 3 (Vol. 41, Sup 7, 71) 1999
NIST Chemistry Reference Methyl iodide(74-88-4)
Pesticides Freedom of Information Act (FOIA) Iodomethane
EPA Substance Registry System Methyl iodide (74-88-4)

SAFETY

Risk and Safety Statements

Symbol(GHS)  GHS hazard pictogramsGHS hazard pictogramsGHS hazard pictogramsGHS hazard pictograms
GHS02,GHS06,GHS08,GHS09
Signal word  Danger
Hazard statements  H226-H301+H331-H312-H315-H319-H335-H351-H410
Precautionary statements  P210-P273-P280-P301+P310-P303+P361+P353-P304+P340+P311
Hazard Codes  T,F,Xn
Risk Statements  21-23/25-37/38-40-11-39/23/24/25-23/24/25-38-20/22
Safety Statements  36/37-38-45-9-24-16-7-60-36/37/39-33-23-20-4
OEB B
OEL TWA: 2 ppm (10 mg/m3) [skin]
RIDADR  UN 2644 6.1/PG 1
WGK Germany  1
RTECS  PA9450000
8
TSCA  Yes
HazardClass  6.1
PackingGroup  I
HS Code  29033990
Hazardous Substances Data 74-88-4(Hazardous Substances Data)
Toxicity LD50 orally in rats: 76 mg/kg; LD50 s.c. in mice: 0.78 mmoles/kg (IARC, 1986)
IDLA 100 ppm
NFPA 704
1
2 1

Iodomethane price More Price(42)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich IX0185 Iodomethane 74-88-4 100g $280 2024-03-01 Buy
Sigma-Aldrich PHR3504 Iodomethane Pharmaceutical Secondary Standard; Certified Reference Material 74-88-4 1ML $243 2024-03-01 Buy
Sigma-Aldrich IX0185 Iodomethane 74-88-4 500g $799 2024-03-01 Buy
Sigma-Aldrich 289566 Iodomethane contains copper as stabilizer, 74-88-4 100g $111 2024-03-01 Buy
Sigma-Aldrich 506052 Iodomethane solution certified reference material, 2000?μg/mL in methanol: water (4:1) 74-88-4 1mL $36.3 2024-03-01 Buy
Product number Packaging Price Buy
IX0185 100g $280 Buy
PHR3504 1ML $243 Buy
IX0185 500g $799 Buy
289566 100g $111 Buy
506052 1mL $36.3 Buy

Iodomethane Chemical Properties,Uses,Production

Overview

Iodomethane is also commonly called methyl iodide. It is a volatile liquid related to methane by replacement of hydrogen. Iodomethane is miscible with common organic solvents. It is colourless, although upon exposure to light, samples develop a purplish tinge. Iodomethane (methyl iodide) is widely used in organic synthesis to deliver a methyl group, via the transformation called methylation.[1]
Iodomethane
Iodomethane(also known as methyl iodide), is a kind of alkyl halide. It is naturally emitted by rice plantations in small amounts. Algae are a great natural producer of it with annual output of being greater than 214,000 tons. Therefore, it exists in ocean in large amount. Terrestrial fungi and bacteria also produce certain amount of iodomethane[2, 3]. It is used in organic synthesis as a source of methyl groups.
Methyl iodide had been approved for use as a pesticide by the United States Environmental Protection Agency in 2007 as a pre-plant biocide used to control insects, plant parasitic nematodes, soil borne pathogens, and weed seeds in vegetables such as. It was registered for use as a pre-plant soil treatment for field grown strawberries, peppers, nut crops, tomatoes, grape vines, ornamentals and turf and nursery grown strawberries, stone fruits, tree nuts, and conifer trees. After the discovery phase in a consumer lawsuit, the manufacturer withdrew the fumigant citing its lack of market viability[4].

Physicochemical properties

Iodomethane, an alkyl halide, is a colorless to pale yellow liquid with an acrid odor. It is stable at room temperature in sealed containers, non-corrosive to metals, and incompatible with strong oxidizing and reducing agents. On exposure to light and moisture, the color turns yellow, red or brown due to decomposition and the liberation of free iodine. When heated to decomposition in air at 270 degree, toxic iodine vapors are emitted. Iodomethane is soluble in water, and is miscible with alcohol and ether[5-7].

Synthesis

Iodomethane can be synthesized by the following several methods[8]:
I. The reaction between methanol with phosphorus triiodide
II. The reaction of dimethyl sulfate with potassium iodide in the presence of calcium carbonate
III. The reaction of methanol with aqueous hydrogen iodide.
IV. The reaction of iodoform with potassium hydroxide and dimethyl sulfate in the presence of ethanol.

Application

Iodomethane is a useful methylating agent that mediates the alkylation of carbon, oxygen, sulfur, nitrogen and phosphorus nucleophiles[9, 10]. For example, phenol reacts with methyl iodide to give anisole. In the Monsanto process, the in situ formed iodomethane reacts with carbon monoxide in the presence of a rhodium complex to give acetyl iodide, which on hydrolysis yields acetic acid[11]. It reacts with magnesium to form the Grignard reagent, methyl-magnesium iodide used in organic synthesis[12]. It also finds applications as an intermediate in the manufacture of pharmaceuticals and in phase-transfer catalysts.
Methyl iodide can also be used as a kind of pesticide used to control insects, plant parasitic nematodes, soil borne pathogens, and weed seeds in vegetables. It can be used in the field growing strawberries, peppers, nut crops, tomatoes, grape vines, ornamentals and turf and nursery growing strawberries, stone fruits, tree nuts, and conifer trees. Its fumigant action is thought to be via the nucleophilic displacement(SN2) reaction in various amino acids and peptides within target organisms. It can also be used as a fire extinguisher[4, 5, 13, 14].

Regulation

Methyl bromide is scheduled for elimination as a soil fumigant and iodomethane has been proposed as an alternative[15-18]. Based on the atmospheric lifetime, global warming potential, and ozone depletion potential, the U.S. Environmental Protection Agency(USEPA) has identified iodomethane as a reduced risk alternative to methyl bromide.
In October, 2007, the USEPA issued a one year time-limited registration of iodomethane. In April 2009, USEPA extended conditional registration of iodomethate without specifying any time limits. The USEPA website provides details of the registration[19]. An application for California registration is currently being evaluated by DPR. Due to its acute toxicity, proposed products containing iodomethane are labeled as restricted use pesticides.

Warning and toxicity

Iodomethane may have certain toxicity when exposure to human and animals[20-22]. In humans, acute[short-term] exposure when inhaling iodomethane may depress the central nervous system(CNS), irritate the lungs and skin, and affect the kidneys[20]. Massive acute inhalation exposure to methyl iodide has led to pulmonary edema. Acute inhalation exposure of humans to methyl iodide has resulted in nausea, vomiting, vertigo, ataxia, slurred speech, drowsiness, skin blistering, and eye irritation[20, 21]. Chronic(long-term) exposure of humans to methyl iodide by inhalation may affect the CNS and cause skin burns in animals and humans. EPA has not classified methyl iodide for potential carcinogenicity[20-22].

References

  1. K. R. Redeker; N.-Y. Wang; J. C. Low; A. McMillan; S. C. Tyler & R. J. Cicerone[2000]. "Emissions of Methyl Halides and Methane from Rice Paddies". Science. 290[5493]: 966–969. doi:10.1126/science.290.5493.966.
  2. https://www.sfgate.com/green/article/Methyl-iodide-gains-state-OK-for-use-on-crops-2455128.php
  3. https://www.mercurynews.com/2012/03/20/maker-of-methyl-iodide-scraps-controversial-pesticide/ https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1233.htm
  4. Keigwin, Richard P. "Iodomethane; Notice of Receipt of Request to Voluntarily Cancel Iodomethane Pesticide Registrations and Amend a Registration." Federal Register[2012].
  5. DPR. 2002a. Product chemistry #1. Volume No. 52875-4, Department of Pesticide Regulation, Registration Branch, Sacramento, California. 
  6. Meister, R.T., ed. 2004. Crop protection handbook. Meister Publishing Company, Willoughby. 
  7. O’Neil, M.J. 2001. The Merck index, 13th ed. Merck & Co., Whitehouse Station, New Jersey. 
  8. http://www.orgsyn.org/demo.aspx?prep=CV2P0399
  9. Sulikowski, Gary A., and M. M. Sulikowski. Iodomethane. e-EROS Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons, Ltd, 2005.
  10. Erk, B.; Boll, R., Trippel, S.; Anielski, D.; Foucar, L.; Rudek, B.; Rudenko, A. Imaging charge transfer in iodomethane upon x-ray photoabsorption. Science 2014, 345[6194], 288-291.
  11. Dong, Y.; Brooks, J. D.; Chen, T. L.; Mullins, D. R.; Cox, D. F. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric alpha-Cr 2 O 3[0001]. Surf. Sci. 2015, 641, 148-153.
  12. Bodewitz, H. W. J. J., et al. "The formation of grignard compounds—V: The reaction of iodomethane with magnesium in allyl phenyl ether. A second-order cidnp spectrum." Tetrahedron 34.16(1978]: 2523-2527.
  13. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1233.htm
  14. G.D. Clayton and F.E. Clayton, Eds. Patty's Industrial Hygiene and Toxicology. Volume IIB. 3rd revised ed. John Wiley & Sons, New York. 1981.
  15. Ohr, H.D., J.J. Sims, N.M. Grech, J.O. Becker, and M.E. Mcgriffen. 1996. Methyl iodide, an ozone-safe alternative to methyl bromide as a soil fumigant. Plant Dis. 80(7]: 731-735.
  16. Sims, J.J., N.M. Grech, J.O. Becker, M.E. McGiffen, and H.D. Ohr. 1995. Methyl iodide: a potential alternative to methyl bromide. Page 46 in Proc. Of the Second Annual Int. Res. Conf. On Methyl Bromide Alternatives and Emissions Reductions, San Diego. 6-8 Nov. 1995. Methyl Bromide Alternative Outreach, Fresno, CA.
  17. U.S. Environmental Protection Agency. 1993. Protection of stratospheric ozone. RED. Reg. 58(51]:15014-15049.
  18. The United Nations Environmental Programmes. 1995. The Montreal protocol on substances that deplete the ozone layer. 1994 Report of the Methyl Bromide Technical Option Committee. UNEP, Nairobi, Kenya.
  19. http://www.epa.gov/pesticides/factsheets/iodomethane_fs.htm
  20. M. Sittig. Handbook of Toxic and Hazardous Chemicals and Carcinogens. 2nd ed. Noyes Publications, Park Ridge, NJ. 1985.
  21. The Merck Index. An Encyclopedia of Chemicals, Drugs, and Biologicals. 11th ed. Ed. S. Budavari. Merck and Co. Inc., Rahway, NJ. 1989.
  22. https://www.epa.gov/sites/production/files/2016-09/documents/methyl-iodide.pdf

Description

Methyl iodide is a colorless liquid with a pungent, ether-like odor. Turns yellow, red, or brown on exposureto light and moisture. Molecular weight = 141.94; Specificgravity (H2O:1) 5 2.28; Boiling point = 42.8℃; Vaporpressure 5 400 mmHg; Freezing/Melting point 5 2 66.7℃.It is noncombustible. Hazard Identification (based on NFPA704 M Rating System): Health 2, Flammability 1, Reactivity0. Slightly soluble in water; solubility 5 1%.

Chemical Properties

light yellow to light pink liquid

Chemical Properties

Methyl iodide is a colorless liquid. Pungent, ethereal odor. Turns yellow, red, or brown on exposure to light and moisture.

Physical properties

Clear, colorless liquid which may become yellow, red, or brown on exposure to light and moisture

Uses

Methyl iodide is used in the analysis of pyridine; microscopy; as an embedding materialfor examining diatoms (Merck 1996); and asa methylating agent.

Uses

.Iodomethane is an approved pesticide used to control insects, plant parasitic nematodes, soil borne pathogens and weed seeds.

Uses

Methylating agent; in microscopy because of its high refractive index; as imbedding material for examining diatoms; in testing for pyridine. Light sensitive etching agent for electronic circuits; component in fire extinguishers.

Definition

ChEBI: A member of the class of iodomethanes that is methane in which one of the hydrogens is replaced by iodine.

Definition

(methyl iodide; CH3I) A liquid alkyl halide made by reaction of methanol with iodine in the presence of red phosphorus.

Production Methods

Methyl iodide has had very limited use as a chemical intermediate (methylations), and in microscopy because of its high refractive index, as imbedding materials for examining diatoms, and in tests for pyridine. It has been proposed as a fire extinguisher and insecticidal fumigant. It is a product of natural biological processes. Methyl iodide is a currently registered pesticide.

General Description

A colorless liquid that turns brown on exposure to light. Denser than water. Contact may irritate skin, eyes and mucous membranes. Very toxic by ingestion, inhalation and skin absorption.

Air & Water Reactions

Soluble in water. Sinks and slowly decomposes in water forming poisonous vapor cloud of HI.

Reactivity Profile

Halogenated aliphatic compounds, such as Iodomethane, are moderately or very reactive. Reactivity generally decreases with increased degree of substitution of halogen for hydrogen atoms. Low molecular weight haloalkanes are highly flammable and can react with some metals to form dangerous products. Materials in this group are incompatible with strong oxidizing and reducing agents. Also, they are incompatible with many amines, alkylphosphines, nitrides, azo/diazo compounds, alkali metals (sodium), and epoxides.

Hazard

Toxic by ingestion, inhalation, and skinabsorption; narcotic, irritant to skin. Eye damageand central nervous system impairment. Question-able carcinogen.

Health Hazard

The acute oral toxicity and inhalation toxicity of methyl iodide is moderate in test animals. It is more toxic than methyl bromide.The toxic symptoms are nausea, vomiting,diarrhea, ataxia, drowsiness, slurred speech,visual disturbances, and tremor. Pulmonaryedema, coma, and death can result from massive exposures. The vapors are an irritantto the eyes. Repeated exposures may causedepression of the central nervous system.Prolonged contact with the liquid can causeskin burn and dermatitis. The reported valuesof LD50, as well as LC50, for this compoundas published in the literature show variations.The fatal doses by inhalation and ingestionare 900 ppm/h in mice and 150 mg/kg inrats, respectively (Buckell 1950)
.Methyl iodide exhibited carcinogenic pro perties in test animals. Administration of thiscompound produced tumors in lungs andcolon. ACGIH (1986) lists it as a suspectedhuman carcinogen.

Health Hazard

The acute toxicity of methyl iodide is moderate by ingestion, inhalation, and skin contact. This substance is readily absorbed through the skin and may cause systemic toxicity as a result. Methyl iodide is moderately irritating upon contact with the skin and eyes. Methyl iodide is an acute neurotoxin. Symptoms of exposure (which may be delayed for several hours) can include nausea, vomiting, diarrhea, drowsiness, slurred speech, visual disturbances, and tremor. Massive overexposure may cause pulmonary edema, convulsions, coma, and death.
Chronic exposure to methyl iodide vapor may cause neurotoxic effects such as dizziness, drowsiness, and blurred vision. There is limited evidence for the carcinogenicity of methyl iodide to experimental animals; it is not classified as an OSHA "select carcinogen."

Health Hazard

Inhalation of vapor causes lung congestion and pulmonary edema. Higher concentrations causes rapid narcosis and death. Contact with liquid irritates eyes and burns skin.

Fire Hazard

Noncombustible. High vapor pressure may cause containers to burst at elevated temperatures.

Flammability and Explosibility

Noncombustible. High vapor pressure may cause containers to burst at elevated temperatures.

Safety Profile

Confirmed carcinogen with experimental neoplastigenic and tumorigenic data. A poison by ingestion, intraperitoneal, and subcutaneous routes. Moderately toxic by inhalation and skin contact. A human skin irritant. Human mutation data reported. A strong narcotic and anesthetic. Explosive reaction with trialkylphosphines, silver chlorite. Violent reaction with oxygen (at 3000C), sodium. When heated to decomposition it emits toxic fumes of I-.

Potential Exposure

Methyl iodide is used in fire extinguishers; as an intermediate in the manufacture of pharmaceuticals and some pesticides.

First aid

If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek med-First Aid: If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek med-ical attention immediately. If this chemical contacts theskin, remove contaminated clothing and wash immediatelywith soap and water. Seek medical attention immediately. Ifthis chemical has been inhaled, remove from exposure,begin rescue breathing (using universal precautions, includ-ing resuscitation mask) if breathing has stopped and CPR ifheart action has stopped. Transfer promptly to a medicalfacility. When this chemical has been swallowed, get medi-cal attention. If victim is conscious, administer water ormilk. Do not induce vomiting. Medical observation isrecommended for 24- -48 h after breathing overexposure, aspulmonary edema may be delayed. As first aid for pulmo-nary edema, a doctor or authorized paramedic may consideradministering a corticosteroid spray.Note to physician:Treatfor methemoglobinemia.Spectrophotometry may be required for precise determina-tion of levels of methemoglobin in urine.

Carcinogenicity

Druckrey et al. reported local sarcomas following weekly subcutaneous injection in BD strain rats. Strain A mice (a susceptible strain) that were injected with methyl iodide were reported to have a slight but significant increase in the number of lung tumors per mouse. Poirer et al. administered iodomethane dissolved in tricaprylin to male and female strain A mice (10/sex/dose) three times weekly by intraperitoneal injection. There was a marginally statistically significant trend for increased lung tumors in treated mice but the outcome was considered equivocal: no clear dose–response relationship and occurrence of spontaneous tumors in untreated mice.
Under the 2005 Guidelines for Carcinogen Risk Assessment (121), the lack of available evidence suggests that there is “inadequate information to assess the carcinogenic potential for iodomethane.”
An early evaluation by the IARC classified iodomethane as carcinogenic in rats. Two subsequent evaluations (123, 124) determined that there is limited evidence for carcinogenicity in experimental animals and the compound is not classifiable regarding carcinogenicity to humans. ACGIH has also reviewed iodomethane carcinogenicity and classified it as category A2, suspected human carcinogen; however, the A2 classification was withdrawn in 1996. Iodomethane was delisted as a carcinogen in the NTP 5th Annual Report on Carcinogens on the basis of the 1986 IARC reevaluation. NTP has not tested iodomethane for carcinogenicity. The State of California determined under Proposition 65 that methyl iodide is a carcinogen, based on the 1977 IARC evaluation. Neither a Toxicological Profile nor an Environmental Health Criteria Monograph has been published.

Environmental Fate

Chemical/Physical. Anticipated products from the reaction of methyl iodide with ozone or OH radicals in the atmosphere are formaldehyde, iodoformaldehyde, carbon monoxide, and iodine radicals (Cupitt, 1980). With OH radicals, CH2, methyl radical, HOI and water are possible reaction products (Brown et al., 1990). The estimated half-life of methyl iodide in the atmosphere, based on a measured rate constant for the vapor phase reaction with OH radicals, ranges from 535 h to 32 wk (Garraway and Donovan, 1979).
Hydrolyzes in water forming methyl alcohol and hydriodic acid. The estimated half-life in water at 25 °C and pH 7 is 110 d (Mabey and Mill, 1978). At 70 °C, the hydrolysis rate was determined to be 3.2 x 10-5/sec which is equivalent to a half-life of 6 h. (Glows and Wren, 2003). May react with chlorides in seawater to form methyl chloride (Zafiriou, 1975).

storage

Color Code—Blue: Health Hazard/Poison: Storein a secure poison location. Prior to working with thischemical you should be trained on its proper handling andstorage. Store in tightly closed containers in a cool, wellventilated area away from oxidizers. Where possible, automatically pump liquid from drums or other storage containers to process containers. A regulated, marked area shouldbe established where this chemical is handled, used, orstored in compliance with OSHA Standard 1910.1045.

Shipping

UN2644 Methyl iodide, Hazard Class: 6.1; Labels: 6.1-Poison Inhalation Hazard, Inhalation Hazard Zone B

Purification Methods

Methyl iodide deteriorates rapidly with liberation of iodine if exposed to light. It is usually purified by shaking with dilute aqueous Na2S2O3 or NaHSO3 until colourless, then washing with water, dilute aqueous Na2CO3, and more water, drying with CaCl2 and distilling. It is stored in a brown bottle away from sunlight in contact with a small amount of mercury, powdered silver or copper. (Prolonged exposure of mercury to methyl iodide forms methylmercuric iodide.) Methyl iodide can be dried further using CaSO4 or P2O5. An alternative purification is by percolation through a column of silica gel or activated alumina, then distillation. The solution can be degassed by using a repeated freeze-pump-thaw cycle. [Beilstein 1 IV 87.]

Incompatibilities

May form explosive mixture with air. Slowly reacts with water forming poisonous hydrogen iodide. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Violent reaction with strong oxidizers, strong reducing agents, strong bases; trialkylphosphines, silver chlorite; calcium, oxygen, sodium. Decomposes @ 270C. Halogenated aliphatic compounds are moderately or very reactive. Halogenated organics generally become less reactive as more of their hydrogen atoms are replaced with halogen atoms. Low molecular weight haloalkanes are highly flammable and can react with some metals to form dangerous products. Materials in this group are incompatible with strong oxidizing and reducing agents. Also, they are incompatible with many amines, alkylphosphines, nitrides, azo/diazo compounds, alkali metals (sodium), and epoxides

Waste Disposal

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform to EPA regulations governing storage, transportation, treatment, and waste disposal

Global( 405)Suppliers
Supplier Tel Email Country ProdList Advantage
Hebei Weibang Biotechnology Co., Ltd
+8615531157085 abby@weibangbio.com China 8810 58
Hebei Mojin Biotechnology Co., Ltd
+86 13288715578 +8613288715578 sales@hbmojin.com China 12835 58
Hebei Chuanghai Biotechnology Co,.LTD
+86-13131129325 sales1@chuanghaibio.com China 5889 58
Zibo Hangyu Biotechnology Development Co., Ltd
+86-0533-2185556 +8617865335152 Mandy@hangyubiotech.com China 10986 58
Henan Fengda Chemical Co., Ltd
+86-371-86557731 +86-13613820652 info@fdachem.com China 20284 58
Henan Tianfu Chemical Co.,Ltd.
+86-0371-55170693 +86-19937530512 info@tianfuchem.com China 21634 55
ATK CHEMICAL COMPANY LIMITED
+undefined-21-51877795 ivan@atkchemical.com China 32957 60
Hefei TNJ Chemical Industry Co.,Ltd.
+86-0551-65418679 +8618949832763 info@tnjchem.com China 2986 55
Biochempartner
0086-13720134139 candy@biochempartner.com CHINA 965 58
Hubei Jusheng Technology Co.,Ltd.
18871490254 linda@hubeijusheng.com CHINA 28172 58

Related articles

  • Iodomethane-Hazard and Toxicity
  • Iodomethane is also commonly called methyl iodide. It is a volatile liquid related to methane by replacement of hydrogen. Iodo....
  • Sep 10,2019

View Lastest Price from Iodomethane manufacturers

Image Update time Product Price Min. Order Purity Supply Ability Manufacturer
Iodomethane pictures 2024-11-25 Iodomethane
74-88-4
US $1.00 / kg 1kg 99% 10 mt Hebei Weibang Biotechnology Co., Ltd
Iodomethane pictures 2024-11-14 Iodomethane
74-88-4
US $63.00 / KG 25Kg/Drum 99% 100T Baoji Guokang Bio-Technology Co., Ltd.
Iodomethane pictures 2024-10-11 Iodomethane
74-88-4
US $19.00 / KG 1KG 99.% 10 ton Hebei Chuanghai Biotechnology Co,.LTD
  • Iodomethane pictures
  • Iodomethane
    74-88-4
  • US $1.00 / kg
  • 99%
  • Hebei Weibang Biotechnology Co., Ltd
  • Iodomethane pictures
  • Iodomethane
    74-88-4
  • US $63.00 / KG
  • 99%
  • Baoji Guokang Bio-Technology Co., Ltd.
  • Iodomethane pictures
  • Iodomethane
    74-88-4
  • US $19.00 / KG
  • 99.%
  • Hebei Chuanghai Biotechnology Co,.LTD
10domethane Halon 10001 Iodomethane, 2M solution in tert-butyl methyl ether Iodomethane, stabilized, 99% Iodomethane,99%,stabilized Iodomethane, Stab. With Copper --- D/C 09 --- Methyl iodide 1g [74-88-4] Iodomethane, 99+%, stab. with copper Iodomethane, 99%, stab. with copper or silver METHYL IODIDE extrapure(stabilized) Iodomethane solution, Methyl iodide Iodomethane2M solution in tert-butyl methyl etherAcroSeal§3 Iodomethane (stabilized with Copper chip) 0.1% METHANOL-13C + 0.3 MG/ML METHYL IODIDE + COPPER WIRE IodoMethane, 2M soln. in tert-butyl Methyl ether halon10001 Iodmethan Iodometano iodo-methan Iodure de methyle ioduredemethyle ioduredemethyle(french) Jodmethan Jod-methan Joodmethaan Methane,iodo- Methyliodide(CH3I) methyliodide(iodomethane) Methyljodid Methyljodide Metylu jodek metylujodek metylujodek(polish) Monoiodomethane Monoioduro di metile monoiodurodimetile Rcra waste number U138 rcrawastenumberu138 Iodomethane,99+% Methyl iodide? METHYL IODIDE (IODOMETHANE) IODOMETHANE 1X1ML MEOH/WATER 80/20 2000U G/ML IODOMETHANE SOLUTION, ~2.0 M IN TERT-BUT YL METHYL ETHER IODOMETHANE REAGENTPLUSTM 99.5% IODOMETHANE, REDIST., STAB. WITH SILVER WOOL IODOMETHANE 100MG NEAT IODOMETHANE REAGENTPLUS(TM) 99% IODOMETHANE, 2.0M SOLUTION IN TERT-BUTYL METHYL ETHER IODOMETHANE, REAGENTPLUS, 99% IODOMETHANE STABILIZED WITH SILVER FOIL IODOMETHANE, REAGENTPLUS, 99.5% IODOMETHANE, STAB. WITH SILVER WOOL MethylIodideForSynthesis IodoMethane, 2M solution in tert-butyl Methyl ether, AcroSeal IODOMETHANE (STABILISED WITH SILVER) FOR Iodomethane solution 2.0 M in tert-butyl methyl ether, contains copper as stabilizer Iodomethane, 99.5%, stabilized Methyl iodide≥ 99% (GC)