ChemicalBook > Product Catalog >Inorganic chemistry >industrial gases >Nitrogen trifluoride

Nitrogen trifluoride

Nitrogen trifluoride  Structure
CAS No.
7783-54-2
Chemical Name:
Nitrogen trifluoride
Synonyms
NF3;Trifluoramine;Trifluoroamine;Trifluorammonia;Perfluoroammonia;Trifluoroammonia;Nitrogen fluoride;N,N,N-Trifluoroamine;Stickstofftrifluorid;NITROGEN TRIFLUORIDE
CBNumber:
CB7152340
Molecular Formula:
F3N
Molecular Weight:
71
MOL File:
7783-54-2.mol
MSDS File:
SDS
Modify Date:
2023/12/19 17:23:09

Nitrogen trifluoride Properties

Melting point -207°C
Boiling point -129°C
Density (liq at bp) 1.885
solubility insoluble in H2O
pka -24.82±0.70(Predicted)
form colorless gas
color colorless
Odor characteristic mouldy odor
Water Solubility insoluble
CAS DataBase Reference 7783-54-2(CAS DataBase Reference)
NIST Chemistry Reference Nitrogen trifluoride(7783-54-2)
EPA Substance Registry System Nitrogen trifluoride (7783-54-2)

SAFETY

Risk and Safety Statements

Symbol(GHS) 
GHS03,GHS04,GHS07,GHS08
Signal word  Danger
Hazard statements  H270-H280-H332-H373
Precautionary statements  P260-P220-P312
Hazard Codes  O
Risk Statements  8-20
Safety Statements  17-23-38
OEB A
OEL TWA: 10 ppm (29 mg/m3)
RIDADR  2451
Hazard Note  Strong oxidising agent
DOT Classification 2.2 (Nonflammable gas)
HazardClass  2.2
HS Code  28129011
IDLA 1,000 ppm
NFPA 704
0
2 0

Nitrogen trifluoride Chemical Properties,Uses,Production

Description

Nitrogen trifluoride is a colorless gas with little odor. Nitrogen trifluoride is an oxidizer that is thennodynamically stable except at elevated temperatures. At temperatures up to about 482°F (250°C), its reactivity is comparable to oxygen. At higher temperatures, its reactivity is similar to fluorine owing to appreciable dissociation into NF2 and F-. The thennal dissociation of nitrogen trifluoride has been studied by a number of investigators and has been found to peak in the temperature range of 1100K to 1500K. In handling nitrogen trifluoride, conditions should be avoided that can result in high temperatures such as adiabatic compression from the rapid pressurization of a system.
nitrogen trifluoride lewis structure
Nitrogen trifluoride acts primarily upon the elements as a fluorinating agent, but not a very active one at lower temperatures. At elevated temperatures, nitrogen trifluoride pyrolyzes with many of the elements to produce nitrogen tetrafluoride and the corresponding fluoride. The pyrolysis of nitrogen trifluoride over copper turnings produces nitrogen tetrafluoride in a 62 percent to 71 percent yield at 707°F (375°C). Pyrolysis over carbon is more complete.

Chemical Properties

Nitrogen trifluoride is a colorless gas. Moldy odor. Shipped as a nonliquefied compressed gas.

Physical properties

Colorless gas; moldy odor; liquefies at -128.75°C; density of liquid 3.116 g/mL; vapor pressure at -158°C 96 torr; solidifies at -206.8°C; critical temperature -39.15°C; critical pressure 44.02 atm; critical volume 126 cm3/mol; very slightly soluble in water.

Uses

Nitrogen trifluoride is an etchant and chamber cleaning agent.
Oxidizer for high-energy fuels, chemical synthesis.

Preparation

Nitrogen trifluoride is prepared by electrolysis of either molten ammonium fluoride, NH4F, or melted ammonium acid fluoride, NH4HF2 (or ammonium fluoride in anhydrous HF). While the NH4F method is preferred because it forms nitrogen trifluoride as the only product, electrolysis of ammonium acid fluoride yields a small amount of dinitrogen difluoride, N2F2,and NF3.
Also, nitrogen trifluoride can be prepared by reaction of ammonia with fluorine diluted with nitrogen in a reactor packed with copper. Other nitrogen fluorides, such as N2F2, N2F4, and NHF2 also are produced. The yield of major product depends on fluorine/ammonia ratio and other conditions.

Production Methods

Nitrogen trifluoride can be formed from a wide variety of chemical reactions. The commercial process for production involves direct fluorination of ammonia with fluorine gas in the presence ofammonium fluoride.

Reactions

Hydrogen reacts with nitrogen trifluoride with the rapid liberation of large amounts of heat and is the basis for the use of nitrogen trifluoride in high-energy chemical lasers. The flammability range for nitrogen trifluoride-hydrogen mixtures is 9.4 mole percent to 95 mole percent nitrogen trifluoride. Nitrogen trifluoride reacts with organic compounds, but generally an elevated temperature is required to initiate the reaction. Under these conditions, the reaction will often proceed explosively, and great care must be exercised when exposing nitrogen trifluoride to organic compounds. Therefore, nitrogen trifluoride has found little use as a fluorinating agent for organic compounds.

General Description

A colorless gas with a moldy odor. Very toxic by inhalation. Slightly soluble in water. Corrosive to tissue. Under prolonged exposure to fire or heat the containers may rupture violently and rocket. Used to make other chemicals and as a component of rocket fuels.

Air & Water Reactions

Slightly soluble in water.

Reactivity Profile

Nitrogen trifluoride is a very powerful oxidizing agent. Presents dangerous fire hazard in the presence of reducing agents. Etches glass in the presence of moisture. Emits toxic and corrosive fumes of fluoride when heated to decomposition [Lewis, 3rd ed., 1993, p. 937]. Can react violently with hydrogen, ammonia, carbon monoxide, diborane, hydrogen sulfide, methane, tetrafluorohydrazine, charcoal. Explosive reaction with chlorine dioxide. A severe explosion may occur when exposed to reducing agents under pressure [Bretherick, 5th ed., 1995, p. 1427].

Hazard

Severe explosion hazard. Corrosive to tissue. Methemoglobinemia, liver and kidney damage.

Health Hazard

Inhaling nitrogen trifluoride can reduce the capacity of red blood cells to carry oxygen. This causes cyanosis, or a bluish discoloration of the skin. Breathing nitrogen trifluoride can also lead to headache, dizziness, weakness and confusion. After prolonged exposure to high concentrations, breakdown of red blood cells and changes in the liver, kidneys, spleen and heart muscle may occur as secondary effects. In fresh air, the initial red blood cell changes will clear over several hours, but the person should still be monitored for secondary effects.

Fire Hazard

Substance does not burn but will support combustion. Some may react explosively with fuels. May ignite combustibles (wood, paper, oil, clothing, etc.). Vapors from liquefied gas are initially heavier than air and spread along ground. Runoff may create fire or explosion hazard. Containers may explode when heated. Ruptured cylinders may rocket.

Industrial uses

Nitrogen trifluoride has been used successfully in large quantities as a fluorine source for high-energy chemical lasers. It is preferred over fluorine because of its comparative ease of handling at ambient conditions.
Recently, an increasing amount of nitrogen trifluoride is being used in the semiconductor industry as a dry etchant, showing significantly higher etch rates and selectivities when compared to carbon tetrafluoride and mixtures of carbon tetrafluoride and oxygen.
Nitrogen trifluoride was also used as an oxidizer in rocketry in the early 1960s, but this application was not commercialized.

Materials Uses

At temperatures less than 482°F (250°C), nitrogen trifluoride has a reactivity similar to that of oxygen and is relatively inert to most materials of construction. At ambient temperatures, brass, aluminum, copper, steel, and stainless steels can be used because corrosion rates of less than 0.1 mil/yr. at 160°F (71.1°C) have been determined for these materials. Nitrogen trifluoride is also compatible with fluorinated materials such as Teflon at ambient temperatures. At increased temperatures and pressures, nitrogen trifluoride's reactivity increases becoming more like that of fluorine, with nickel and Monel being the preferred materials of construction.

Safety Profile

A poison. Mildly toxic by inhalation. Prolonged absorption may cause mottling of teeth, skeletal changes. Severe explosion hazard by chemical reaction with reducing agents, particularly when under pressure. A very dangerous fire hazard; a very powerful oxidner; otherwise inert at normal temperatures and pressures.

Potential Exposure

This material has been used in chemical synthesis and as an oxidizer for high-energy fuels (as an oxidizer in rocket propellant combinations).

storage

Nitrogen trifluoride cylinders must be securely supported while in use to prevent movement and straining of connections. Full cylinders must be stored in a well-ventilated area, protected from excessive heat (125°F or 51.7°C), located away from organic or flammable materials, and secured. Valve protection caps and valve outlet caps must be securely in place at all times when the cylinder is not in use.

Shipping

UN2451 Nitrogen trifluoride, Hazard Class: 2.2; Labels: 2.2-Nonflammable compressed gas; 5.1-Oxidizer. Cylinders must be transported in a secure upright position, in a well-ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.

Incompatibilities

The gas is a powerful oxidizer. Presents dangerous fire hazard in the presence of reducing agents. Etches glass in the presence of moisture. Reacts with oil, grease, reducing agents and other oxidizable materials; combustibles, organics, ammonia, carbon monoxide; methane, hydrogen, hydrogen sulfide; activated charcoal; diborane, water. Can react violently with hydrogen, ammonia, carbon monoxide, diborane, hydrogen sulfide, methane, tetrafluorohydrazine, charcoal. Nitrogen trifluoride will increase intensity of an existing fire.

Waste Disposal

Return refillable compressed gas cylinders to supplier. Vent into large volume of concentrated reducing agent (bisulfites, ferrous salts or hypo) solution, then neutralize and flush to sewer with large volumes of water.

Global( 55)Suppliers
Supplier Tel Country ProdList Advantage Inquiry
Triveni chemicals 08048762458 New Delhi, India 6093 58 Inquiry
Dalian Richfortune Chemicals Co., Ltd 0411-84820922 8613904096939 China 304 57 Inquiry
Henan Tianfu Chemical Co.,Ltd. +86-0371-55170693 +86-19937530512 China 21675 55 Inquiry
CONIER CHEM AND PHARMA LIMITED +8618523575427 China 49391 58 Inquiry
SIMAGCHEM CORP +86-13806087780 China 17367 58 Inquiry
Hefei TNJ Chemical Industry Co.,Ltd. 0551-65418671 China 34571 58 Inquiry
CD Chemical Group Limited +8615986615575 China 20356 58 Inquiry
Shaanxi Didu New Materials Co. Ltd +86-89586680 +86-13289823923 China 9003 58 Inquiry
ABCR GmbH & CO. KG 49 721 95061 0 Germany 6846 75 Inquiry
Qiyuan (Guangdong) Pharmaceutical Chemical Co., Ltd. 400-666-9280 18026564465 China 8011 58 Inquiry

Related articles

  • About the polarity of NF3
  • Nitrogen trifluoride is a chemical compound with chemical formula NF3. It exists as a colorless gas having a musty smell at ro....
  • Dec 19,2023
NITROGEN TRIFLUORIDE: 99.99% Trifluorammonia Nitrogen Trifluoride (NF3) N,N,N-Trifluoroamine NF3 Nitrogen fluoride (NF3) nitrogenfluoride(nf3) Perfluoroammonia Stickstoff(III)-fluorid Stickstofftrifluorid Trifluoroamine Trifluoroammonia NITROGEN TRIFLUORIDE Nitrogen fluoride Trifluoramine Nitrogen trifluoride 99% Nitrogentrifluoride99% High purity CAS 7783-54-2 Nitrogen trifluoride in stock Nitrogen Trifiuoride 7783-54-2 F3N Inorganics Inorganic Fluorides