ChemicalBook # Chemical Safety Data Sheet MSDS / SDS # Crotonic acid Revision Date: 2024-03-16 Revision Number: 1 # SECTION 1: Identification of the substance/mixture and of the company/undertaking #### **Product identifier** Product name : Crotonic acid CBnumber : CB9145403 CAS : 3724-65-0 EINECS Number : 223-077-4 Synonyms : Crotonic acid,2-Butenoic acid #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses : For R&D use only. Not for medicinal, household or other use. Uses advised against : none ## **Company Identification** Company : Chemicalbook Address : Building 1, Huihuang International, Shangdi 10th Street, Haidian District, Beijing Telephone : 400-158-6606 # SECTION 2: Hazards identification #### Classification of the substance or mixture Acute toxicity - Category 4, Oral Acute toxicity - Category 4, Dermal Skin corrosion, Sub-category 1C Serious eye damage, Category 1 #### Label elements ## Pictogram(s) Signal word Danger #### Hazard statement(s) H302 Harmful if swallowed H312 Harmful in contact with skin H314 Causes severe skin burns and eye damage #### Precautionary statement(s) #### Prevention P264 Wash ... thoroughly after handling. P270 Do not eat, drink or smoke when using this product. P280 Wear protective gloves/protective clothing/eye protection/face protection/hearing protection/... P260 Do not breathe dust/fume/gas/mist/vapours/spray. #### Response P301+P317 IF SWALLOWED: Get medical help. P330 Rinse mouth. P302+P352 IF ON SKIN: Wash with plenty of water/... P317 Get medical help. P321 Specific treatment (see ... on this label). P362+P364 Take off contaminated clothing and wash it before reuse. P301+P330+P331 IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. P363 Wash contaminated clothing before reuse. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P316 Get emergency medical help immediately. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P305+P354+P338 IF IN EYES: Immediately rinse with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. #### Storage P405 Store locked up. #### Disposal P501 Dispose of contents/container to an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal. #### Other hazards no data available # SECTION 3: Composition/information on ingredients #### **Substance** Product name : Crotonic acid Synonyms : Crotonic acid,2-Butenoic acid CAS : 3724-65-0 EC number : 223-077-4 MF : C4H6O2 MW : 86.09 # SECTION 4: First aid measures ## Description of first aid measures #### If inhaled Fresh air, rest. Half-upright position. Artificial respiration may be needed. Refer for medical attention. #### Following skin contact Remove contaminated clothes. Rinse skin with plenty of water or shower. Refer for medical attention . #### Following eye contact First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then refer for medical attention. #### Following ingestion Rinse mouth. Do NOT induce vomiting. Rest. Refer for medical attention . #### Most important symptoms and effects, both acute and delayed Excerpt from ERG Guide 153 [Substances - Toxic and/or Corrosive (Combustible)]: TOXIC; inhalation, ingestion or skin contact with material may cause severe injury or death. Contact with molten substance may cause severe burns to skin and eyes. Avoid any skin contact. Effects of contact or inhalation may be delayed. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution. (ERG, 2016) #### Indication of any immediate medical attention and special treatment needed For immediate first aid - Ensure that adequate decontamination has been carried out. If victim is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask, device or pocket mask as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep victim quiet and maintain normal body temperature. Obtain medical attention. Organic acids and related compounds # SECTION 5: Firefighting measures ## **Extinguishing media** If material on fire or involved in fire: Use water in flooding quantities as fog. Solid streams of water may be ineffective. Cool all affected containers with flooding quantities of water. Apply water from as far a distance as possible. Use "alcohol" foam, dry chemical or carbon dioxide. ## **Specific Hazards Arising from the Chemical** Excerpt from ERG Guide 153 [Substances - Toxic and/or Corrosive (Combustible)]: Combustible material: may burn but does not ignite readily. When heated, vapors may form explosive mixtures with air: indoors, outdoors and sewers explosion hazards. Those substances designated with a (P) may polymerize explosively when heated or involved in a fire. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated. Runoff may pollute waterways. Substance may be transported in a molten form. (ERG, 2016) #### Advice for firefighters Wear self-contained breathing apparatus for firefighting if necessary. #### **NFPA 704** | | HEALTH | 3 | Short exposure could cause serious temporary or moderate residual injury (e.g. <u>liquid hydrogen, sulfuric acid</u> , <u>calcium</u> <u>hypochlorite</u> , hexafluorosilicic acid) | |---|---------------|---|---| | • | FIRE | 2 | Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur and multiple finely divided suspended solids that do not require heating before ignition can occur. Flash point between 37.8 and 93.3 °C (100 and 200 °F). (e.g. diesel fuel, <u>sulfur</u>) | | | REACT | 0 | Normally stable, even under fire exposure conditions, and is not reactive with water (e.g. helium, N2) | | | SPEC.
HAZ. | | | ## SECTION 6: Accidental release measures #### Personal precautions, protective equipment and emergency procedures Avoid dust formation. Avoid breathing mist, gas or vapours. Avoid contacting with skin and eye. Use personal protective equipment. Wear chemical impermeable gloves. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Keep people away from and upwind of spill/leak. #### **Environmental precautions** Consult an expert! Personal protection: complete protective clothing including self-contained breathing apparatus. Let solidify. Sweep spilled substance into covered containers. Then store and dispose of according to local regulations. #### Methods and materials for containment and cleaning up Collect and arrange disposal. Keep the chemical in suitable and closed containers for disposal. Remove all sources of ignition. Use spark-proof tools and explosion-proof equipment. Adhered or collected material should be promptly disposed of, in accordance with appropriate laws and regulations. # SECTION 7: Handling and storage #### Precautions for safe handling Handling in a well ventilated place. Wear suitable protective clothing. Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Use non-sparking tools. Prevent fire caused by electrostatic discharge steam. #### Conditions for safe storage, including any incompatibilities Separated from food and feedstuffs, bases, oxidants and reducing agents. Dry. Keep in the dark. # SECTION 8: Exposure controls/personal protection #### **Control parameters** #### Occupational Exposure limit values no data available #### **Biological limit values** no data available #### **Exposure controls** Ensure adequate ventilation. Handle in accordance with good industrial hygiene and safety practice. Set up emergency exits and the riskelimination area. #### Individual protection measures #### Eye/face protection Wear tightly fitting safety goggles with side-shields conforming to EN 166(EU) or NIOSH (US). #### Skin protection Wear fire/flame resistant and impervious clothing. Handle with gloves. Gloves must be inspected prior to use. Wash and dry hands. The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it. #### Respiratory protection If the exposure limits are exceeded, irritation or other symptoms are experienced, use a full-face respirator. #### Thermal hazards no data available # SECTION 9: Physical and chemical properties ## Information on basic physicochemical properties | Physical state | Crotonic acid is a white crystalline solid. Shipped as either a solid or liquid. Soluble in water and less | | |--|--|--| | | dense than water. Corrosive to metals and tissue. | | | Colour | MONOCLINIC NEEDLES OR PRISMS (FROM WATER OR PETROLEUM ETHER) | | | Odour | no data available | | | Melting point/freezing point | 73°C | | | Boiling point or initial boiling point and | 181°C | | | boiling range | | | | Flammability | Combustible. | | | Lower and upper explosion | no data available | | | limit/flammability limit | | | | Flash point | 88°C | | | Auto-ignition temperature | 745 DEG F (396 DEG C) | | | Decomposition temperature | no data available | | | рН | no data available | | | Kinematic viscosity | no data available | | | Solubility | In water: soluble | | | Partition coefficient n-octanol/water | Log Kow = 0.72 /isomer not specified/ | | | Vapour pressure | 0.19 mm Hg (20 °C) | | | Density and/or relative density | 1.027 | | | Relative vapour density | 2.97 (vs air) | | | Particle characteristics | no data available | | | | | | SECTION 10: Stability and reactivity Reactivity The substance may polymerize under the influence of UV light or moisture. The solution in water is a weak acid. Reacts violently with bases, oxidants and reducing agents. This generates fire and explosion hazard. Chemical stability no data available Possibility of hazardous reactions MODERATE, WHEN EXPOSED TO HEAT OR FLAMECROTONIC ACID is a carboxylic acid. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in it to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions. Conditions to avoid no data available Incompatible materials no data available Hazardous decomposition products Thermal decomposition products include carbon dioxide and carbon monoxide. Organic acids and related compounds **SECTION 11: Toxicological information** Acute toxicity • Oral: no data available · Inhalation: no data available • Dermal: no data available #### Skin corrosion/irritation no data available #### Serious eye damage/irritation no data available ## Respiratory or skin sensitization no data available #### Germ cell mutagenicity no data available #### Carcinogenicity no data available #### Reproductive toxicity no data available #### STOT-single exposure no data available #### STOT-repeated exposure no data available #### **Aspiration hazard** no data available # SECTION 12: Ecological information #### **Toxicity** Toxicity to fish: no data available Toxicity to daphnia and other aquatic invertebrates: no data available Toxicity to algae: no data available Toxicity to microorganisms: no data available #### Persistence and degradability Crotonic acid (mixture) was identified as being amenable to anaerobic biodegradation(1). Anaerobic bacteria isolated from mesophilic digester sludge acclimatized with 4-chlorobutyrate tentatively classified in the genus Clostridium, degraded crotonate to butyrate, acetate, and hydrogen(2). Ilyobacter polytropus anaerobically degraded crotonate to butyrate and acetate(2). Crotonate was degraded by an anaerobic bacterium to butyrate and acetate(3). After a lag period of 2 days, crotonic acid (isomer not specified) was metabolized, at a rate of 200 mg/l day, by anaerobic bacteria acclimated to acetate culture(4). Crotonic acid (isomer not specified) reached 44% of its theoretical BOD in 5 days using a sewage inoculum(5). #### **Bioaccumulative potential** An estimated BCF value of 2.1 was calculated for crotonic acid(SRC), using a measured log Kow of 0.72(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF value suggests that bioconcentration in aquatic organisms is low(SRC). #### Mobility in soil The Koc of crotonic acid is estimated as approximately 59(SRC), using a measured log Kow of 0.72(1) and a regression-derived equation(2,SRC). According to a classification scheme(3), this estimated Koc value suggests that crotonic acid is expected to have high mobility in soil(SRC). #### Other adverse effects no data available # **SECTION 13: Disposal considerations** #### **Disposal methods** #### Product The material can be disposed of by removal to a licensed chemical destruction plant or by controlled incineration with flue gas scrubbing. Do not contaminate water, foodstuffs, feed or seed by storage or disposal. Do not discharge to sewer systems. #### Contaminated packaging Containers can be triply rinsed (or equivalent) and offered for recycling or reconditioning. Alternatively, the packaging can be punctured to make it unusable for other purposes and then be disposed of in a sanitary landfill. Controlled incineration with flue gas scrubbing is possible for combustible packaging materials. # **SECTION 14: Transport information** ### **UN Number** ADR/RID: UN2823 (For reference only, please check.) IMDG: UN2823 (For reference only, please check.) IATA: UN2823 (For reference only, please check.) #### **UN Proper Shipping Name** ADR/RID: CROTONIC ACID, SOLID (For reference only, please check.) IMDG: CROTONIC ACID, SOLID (For reference only, please check.) IATA: CROTONIC ACID, SOLID (For reference only, please check.) #### Transport hazard class(es) ADR/RID: 8 (For reference only, please check.) IMDG: 8 (For reference only, please check.) IATA: 8 (For reference only, please check.) ## Packing group, if applicable ADR/RID: III (For reference only, please check.) IMDG: III (For reference only, please check.) IATA: III (For reference only, please check.) #### **Environmental hazards** ADR/RID: No IMDG: No IATA: No #### Special precautions for user no data available #### Transport in bulk according to IMO instruments no data available # **SECTION 15: Regulatory information** #### Safety, health and environmental regulations specific for the product in question **European Inventory of Existing Commercial Chemical Substances (EINECS)** Listed. **EC Inventory** Listed. United States Toxic Substances Control Act (TSCA) Inventory Listed. China Catalog of Hazardous chemicals 2015 Listed. New Zealand Inventory of Chemicals (NZIoC) Listed. **PICCS** Listed. **Vietnam National Chemical Inventory** Listed. **IECSC** Listed. Korea Existing Chemicals List (KECL) Listed. ## SECTION 16: Other information #### Abbreviations and acronyms CAS: Chemical Abstracts Service ADR: European Agreement concerning the International Carriage of Dangerous Goods by Road RID: Regulation concerning the International Carriage of Dangerous Goods by Rail IMDG: International Maritime Dangerous Goods IATA: International Air Transportation Association TWA: Time Weighted Average STEL: Short term exposure limit LC50: Lethal Concentration 50% LD50: Lethal Dose 50% EC50: Effective Concentration 50% #### References IPCS - The International Chemical Safety Cards (ICSC), website: http://www.ilo.org/dyn/icsc/showcard.home HSDB - Hazardous Substances Data Bank, website: https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm IARC - International Agency for Research on Cancer, website: http://www.iarc.fr/ eChemPortal - The Global Portal to Information on Chemical Substances by OECD, website: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en CAMEO Chemicals, website: http://cameochemicals.noaa.gov/search/simple ChemlDplus, website: http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp ERG - Emergency Response Guidebook by U.S. Department of Transportation, website: http://www.phmsa.dot.gov/hazmat/library/erg Germany GESTIS-database on hazard substance, website: http://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index-2.jsp ECHA - European Chemicals Agency, website: https://echa.europa.eu/ #### Disclaimer: The information in this MSDS is only applicable to the specified product, unless otherwise specified, it is not applicable to the mixture of this product and other substances. This MSDS only provides information on the safety of the product for those who have received the appropriate professional training for the user of the product. Users of this MSDS must make independent judgments on the applicability of this SDS. The authors of this MSDS will not be held responsible for any harm caused by the use of this MSDS.