Welcome to chemicalbook!
Chinese English Japanese Germany Korea
400-158-6606
Try our best to find the right business for you.
Do not miss inquiry messages Please log in to view all inquiry messages.

Welcome back!

ChemicalBook CAS DataBase List Boron

Boron synthesis

1synthesis methods
Boron may be prepared by several methods, such as chemical reduction of boron compounds, electrolytic reduction in nonaqueous phase, or by thermal decomposition. Many boron compounds including boron oxides, borates, boron halides, borohydrides, and fluoroborates can be reduced to boron by a reactive metal or hydrogen at high temperatures:
B2O3 + 3Ca → 2B + 3CaO
The metal is obtained as a black amorphous product.
2BCl3 + 3H2 → 2B + 6HCl
High purity grade boron may be prepared by such hydrogen reduction at high temperatures using a hot filament.
Electrolytic reduction and thermal decomposition have not yet been applied in large scale commercial methods. Electrolysis of alkali or alkaline earth borates produces boron in low purity. Electrolytic reduction of fused melts of boron trioxide or potassium tetrafluroborate in potassium chloride yield boron in high purity. Also, boron tribromide or boron hydrides may be thermally dissociated by heating at elevated temperatures.
Impurities from boron may be removed by successive recrystallization or volatilization at high temperatures. Removal of certain impurities such as oxygen, nitrogen, hydrogen or carbon from boron are more difficult and involve more complex steps.
-

Yield:-

Reaction Conditions:

with sodium azide;dinitrogen monoxide in water;Kinetics;other Radiation; N2O satd. soln. of NaN3 and NaBH4 at pH 11.1 (molar ratio 200:3), pulse radiolysis;

References:

Horii, Hideo;Taniguchi, Setsuo [Journal of the Chemical Society. Chemical communications,1986,# 12,p. 915 - 916]

Boron Related Search: