Welcome to chemicalbook!
Chinese English Japanese Germany Korea
400-158-6606
Try our best to find the right business for you.
Do not miss inquiry messages Please log in to view all inquiry messages.

Welcome back!

ChemicalBook CAS DataBase List DIISOOCTYLPHOSPHINIC ACID

DIISOOCTYLPHOSPHINIC ACID synthesis

3synthesis methods
-

Yield:83411-71-6 86.9%

Reaction Conditions:

with sodium hypophosphite hydrate;di-tert-butyl peroxide;acetic acid at 135; for 30 h;

Steps:

1
Example 1; To synthesize bis(2,4,4-trimethylpentyl)phosphinic acid, a 1.5 liter autoclave was charged with 40 g (0.377 moles) of sodium hypophosphite; 40 g of acetic acid; 132.3 g (0.943 moles) of diisobutylene (80%); and 2.8 g (0.019 moles) of tert-butyl peroxide initiator. The mixture was then heated to about 135° C. during an 8 hour day for about four days, i.e., a total of 30 hours and 1.4 g of the initiator was added at the beginning of each day. The reaction mixture was monitored by 31P NMR and resulted in the composition identified in TABLE I below. The original mixture contained 75.3% of the desired dialkylphosphinic acid product and 12.1% of the undesired monoalkylphosphinic acid by-product.The completed reaction mixture (220 g) was transferred to an Erlenmeyer flask and heated in the range of from about 70° C. to about 80° C. to reduce the viscosity. 38 g of water was slowly added until two phases were observed. The aqueous phase was removed and its pH was measured to be about 5. The organic phase was then washed with 75 g of a 4% caustic solution and the resulting aqueous layer (89.2 g) was removed. The organic layer was acidified and washed with 50 g of a 10% sulfuric acid solution and the resulting aqueous phase removed.The acidified and washed organic phase was filtered through PS paper and volatile materials were removed by vacuum distillation. 95 g of dialkylphosphinic acid product were recovered with a purity of 93.7% based on phosphorous NMR; thus a yield of 86.9%. The composition of the final product is identified in TABLE I below.

References:

Liu, Leo Zhaoqing;Woodward, Gary US2008/103330, 2008, A1 Location in patent:Page/Page column 6

FullText