ChemicalBook--->CAS DataBase List--->57-47-6

57-47-6

57-47-6 Structure

57-47-6 Structure
IdentificationMore
[Name]

PHYSOSTIGMINE
[CAS]

57-47-6
[Synonyms]

ESERINE
PHYSOSTIGMINE
(3as-cis)-1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethylpyrrolo(2,3-b)indol-5-olmeth
(3aS-cis)-1,2,3,3a,8,8a-Hexahydro-1,3a,8-trimethylpyrrolo[2,3-b]indol-5-olmethylcarbamate (ester)
1,2,3,3a,8,8a-Hexahydro-1,3a,8-trimethylpyrrolo-[2,3-b]indol-5-yl methylcarbamate
1,2,3,3abeta,8abeta-Hexahydro-1,3a,8-trimethylpyrrolo[2,3-b]-indol-5-yl methylcarbamate
1,3a,8-Trimethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indol-5-yl methylcarbamate
3-b)indol-5-ol,1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-pyrrolo(methylcarb
Antilirium
calabarine
Carbamic acid, methyl-, ester with eseroline
Cogmine Eserine
CS 58525
cs58525
Erserine
Eserolein, methylcarbamate
Eserolein, methylcarbamate (ester)
eserolein,methylcarbamate(ester)
Esromiotin
Ezerin
[EINECS(EC#)]

200-332-8
[Molecular Formula]

C15H21N3O2
[MDL Number]

MFCD00151090
[Molecular Weight]

275.35
[MOL File]

57-47-6.mol
Chemical PropertiesBack Directory
[Appearance]

solid
[Melting point ]

102-104 °C(lit.)
[alpha ]

D17 -76° (c = 1.3 in chloroform); D25 -120° (benzene)
[Boiling point ]

418.29°C (rough estimate)
[density ]

1.166±0.06 g/cm3 (20 ºC 760 Torr)
[refractive index ]

1.5600 (estimate)
[Fp ]

>100℃
[storage temp. ]

2-8°C
[form ]

Powder
[pka]

6.12, 12.24(at 25℃)
[color ]

Off-white
[Water Solubility ]

Soluble in water (1:75), alcohol (1:10), chloroform (1:1), ether (1:30), and DMSO.
[Sensitive ]

Air & Light Sensitive
[Usage]

Physostigmine base (Eserine-Base) is used as bulk pharmaceuticals (parasympathomimetic, cholinergic, ophthalmic, anti-Alzheimer). Product Data Sheet
[Merck ]

7384
[CAS DataBase Reference]

57-47-6(CAS DataBase Reference)
[EPA Substance Registry System]

Physostigmine (57-47-6)
Safety DataBack Directory
[Hazard Codes ]

T+
[Risk Statements ]

R26/28:Very Toxic by inhalation and if swallowed .
[Safety Statements ]

S23:Do not breathe gas/fumes/vapor/spray (appropriate wording to be specified by the manufacturer) .
S45:In case of accident or if you feel unwell, seek medical advice immediately (show label where possible) .
S25:Avoid contact with eyes .
[RIDADR ]

UN 1544 6.1/PG 1
[WGK Germany ]

3
[RTECS ]

TJ2100000
[F ]

8-10
[TSCA ]

Yes
[HazardClass ]

6.1(a)
[PackingGroup ]

II
[Safety Profile]

A human poison by an unspecified route. Poison experimentally by ingestion, subcutaneous, intramuscular, intravenous, and intraperitoneal routes. Human systemic effects by ingestion: nausea, dyspnea, coma, blood pressure elevation, flaccid paralysis without anesthesia, muscle weakness. Normally administered by injection. Poisoning can occur as a result of a mistake in dosage or due to hypersensitivity of the patient withm 5 to 25 minutes after administration. Death usually results from respiratory paralysis. Experimental reproductive effects. Combustible when exposed to heat or flame. When heated to decomposition it emits toxic fumes of NOx. See also CARBAMATES.
[Hazardous Substances Data]

57-47-6(Hazardous Substances Data)
[Toxicity]

LD50 orally in mice: 4.5 mg/kg (Lynch, Coon)
Raw materials And Preparation ProductsBack Directory
[Raw materials]

Hydrogen peroxide-->ZINC-->1H-Indole-3-acetaldehyde, 2,3-dihydro-5-methoxy-1,3-dimethyl-2-oxo-, (3S)--->2-Butenoic acid, 2-methyl-4-[[tris(1-methylethyl)silyl]oxy]-, (2Z)--->Benzenamine, 2-iodo-4-methoxy-N-methyl--->Eseroline-->(3aS,8aR)-5-methoxy-1,3a,8-trimethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-->METHYLISOCYANATE 1 X 500MG NEAT
Hazard InformationBack Directory
[General Description]

White, odorless, microcrystalline powder. Used as a cholinergic (anticholinesterase) agent and as a veterinary medication.
[Health Hazard]

Super toxic. Probable oral lethal dose is less than 5 mg/kg for a 70 kg (150 lb.) person. Material is a cholinesterase inhibitor. Effects of exposure may involve the respiratory, gastrointestinal, cardiovascular and central nervous systems. Death occurs due to respiratory paralysis or impaired cardiac function. Time to death may vary from 5 minutes to 24 hours, in severely poisoned patients, depending on factors such as the dose and route. Persons with asthma and/or persons that require drugs containing choline esters are at risk.
[Potential Exposure]

Physostigmine, an alkaloid, originally derived from the calabar bean (Physostigma venenosum) isa potent and reversible inhibitor of cholinesterase. Material is used as a cholinergic (anticholinesterase) agent and as a veterinary medication. Although listed as a carbamate pesticide, physostigmine is not registered for use as an agricultural chemical in the United States.
[Fire Hazard]

PHYSOSTIGMINE is a slight fire hazard. When heated to decomposition PHYSOSTIGMINE emits toxic fumes of nitrogen oxides. Keep from light and heat.
[First aid]

If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit.
[Shipping]

UN2811 Toxic solids, organic, n.o.s., Hazard Class: 6.1; Labels: 6.1-Poisonous materials, Technical Name Required. UN1544 Alkaloids, solid, n.o.s. or Alkaloid salts, solid, n.o.s. poisonous, Hazard Class: 6.1; Labels: 6.1-Poisonous materials, Technical Name Required.
[Incompatibilities]

Light and heat.
[Description]

The classic AChEI, physostigmine, is an alkaloid obtained from seeds of the Calabar bean (Physostigma venenosum). Its parasympathomimetic effects were recognized long before its structure was elucidated in 1923. In 1929, Stedman found that the mechanism of the parasympathomimetic effects of physostigmine was inhibition of AChE; it inhibits AChE by acting as a substrate and carbamylating the enzyme. Acetylcholinesterase is carbamylated at a slow rate, but physostigmine has exceptionally high affinity (Ki ~ 10-9 M) for the catalytic site of the enzyme. By comparison, the Ks for acetylcholine is on the order of 10-4 M. Thus, physostigmine is classified as a reversible AChEI that carbamylates the enzyme at a slow rate; the carbamylated AChE also is regenerated quite slowly. Because physostigmine is a tertiary amine with a pKa of 8.2 (+BH) rather than a quaternary ammonium salt, it is more lipophilic than many other AChEIs and can diffuse across the blood-brain barrier. The tertiary amine also imparts pH dependence to its ability to inhibit AChE, because its affinity for AChE is greater when the amine is protonated.
[Chemical Properties]

Physostigmine is a white crystalline solid. Odorless.
[Waste Disposal]

It is not appropriate to dispose of expired or waste drugs or waste product such as lab chemicals by flushing them down the toilet or discarding them to the trash. Larger quantities shall carefully take into consideration applicable EPA, and FDA regulations. If possible return the lab chemicals to the manufacturer for proper disposal being careful to properly label and securely package the material. Alternatively, the waste lab chemicals shall be labeled, securely packaged and transported by a state licensed medical waste contractor to dispose by burial in a licensed hazardous or toxic waste landfill or incinerator. In accordance with 40CFR165, follow recommendations for the disposal of pesticides and pesticide containers. Must be disposed properly by following package label directions or by contacting your local or federal environmental control agency, or by contacting your regional EPA office.
[Physical properties]

Appearance: flaky crystal. Solubility: slightly soluble in water; soluble in ethanol, benzene, and fatty oil. Melting point: 102–104 °C. Specific optical rotation: ?120° in benzene and ?76° in chloroform, respectively
[History]

Eserine was first discovered as a reversible AChE inhibitor, and it is also a tertiary amine and easily crosses the blood-brain barrier. In 1846, Robert Christison observed that the extract from Calabar bean caused cardiac arrest and death; he personally ate a certain amount of the extract and felt extremely feeble but luckily survived. In 1855, Christison reported that some kind of substances in the Calabar bean possessed strong biological activity.
In 1864, chemists afforded crystal pure extract which was named as eserine. After that, Thomas Richard Fraser and Douglas Argyll Robertson cooperated to employ eserine in experimental ophthalmology, and the results showed that the antagonistic effect of eserine on mydriasis is induced by atropine. In 1875, Ludwig Laqueur declared that eserine could also be employed to depress intraocular pressure and first used as a treatment for glaucoma. In 1925, Edgar Stedman and George Barger determined the structure of eserine, which belongs to a natural product whose structure is characterized with hexahydropyrroloindole. In 1935, Percy Lavon Julian completed the chemical synthesis of its racemate for the first time .
[Uses]

It is a parasympathomimetic, specifically, a reversible cholinesterase inhibitor obtained from the Calabar bean, used to treat glaucoma and delayed gastric emptying.
[Uses]

Physostigmine base (Eserine-Base) is used as bulk pharmaceuticals (parasympathomimetic, cholinergic, ophthalmic, anti-Alzheimer). Product Data Sheet
[Definition]

ChEBI: Physostigmine is a carbamate ester and an indole alkaloid. It has a role as a miotic, an EC 3.1.1.8 (cholinesterase) inhibitor and an antidote to curare poisoning.
[Brand name]

Eserine Sulfate (Ciba Vision, US Ophthalmics).
[Mechanism of action]

Physostigmine is easily absorbed from the gastrointestinal tract and other mucous membranes. Upon entering the bloodstream, it easily permeates the blood–brain barrier. It is inactivated by cholinesterase of the plasma. Physostigmine has a minimal direct effect on cholinesterase receptors.
[Pharmacology]

Eserine was first discovered as one of AChE inhibitors. AChE inhibitor is the same as ACh, which can combine with cholinesterase, while AChE inhibitor will combine more tightly with cholinesterase, which leads to slow hydrolysis, inactive enzyme, cumulative ACh, and emergent biological activities . Although eserine does not directly activate M and N receptor, it can cross the central nervous system and strongly militate the central and peripheral nervous systems .
When locally using eserine in the eyes, the effect is similar to pilocarpine but more powerful and durable. It can activate AChR of iridis sphincter, representing that the pupil is narrowed and the intraocular pressure is depressed, which is more obvious when being used to treat glaucoma patients. When being absorbed, the effect of eserine is similar to neostigmine, which is called as M- and N-like effects, representing that smooth muscle is activated strongly. After crossing the central nervous system, eserine can inhibit the activities induced by AChE, and it is presented as “activate previously, inhibit later.” It is noted that the effect of eserine is dependent on the status of the central nervous system .
[Clinical Use]

Physostigmine was used first as a topical application inthe treatment of glaucoma. Its lipid solubility properties permitadequate absorption from ointment bases. It is used systemicallyas an antidote for atropine poisoning and otheranticholinergic drugs by increasing the duration of actionof ACh at cholinergic sites through inhibition of AChE.Physostigmine, along with other cholinomimetic drugs actingin the CNS, has been studied for use in the treatment ofAlzheimer disease. Cholinomimetics that are currentlyused or which have been recently evaluated in the treatmentof Alzheimer disease include donepezil, galantamine, metrifonate,rivastigmine, and tacrine. It is anticipated that thislist will continue to grow as the etiology of this disease becomesbetter understood.
[Synthesis]

Physostigmine, 1,3a,8-trimethyl-2,3,3a,8a-tetrahydropyrrolo[2,3-b]- indol-5-yl-N-methylcarbamate (13.2.7), is an alkaloid isolated from the so-called grand beans?aseeds of the poisonous African plant of the familia Physostigma venenosum. Physostigmine is made synthetically in various ways [40¨C42], one of which being from pethoxymethylaniline, which is reacted with |á-bromopropionyl bromide in the presence of aluminum chloride, giving 1,3-dimethyl-5-ethoxyindolin-2-one (13.2.1). Reacting this with chloracetonitrile in the presence of sodium ethoxide gives 1,3-dimethyl-5-ethoxy- 3-cyanomethylindolin-2-one (13.2.2). The nitrile group is reduced to an amine group, which is further methoxided, giving 1,3-dimethyl-5-ethoxy-3-(|? methylaminoethyl) indolin-2-one (13.2.3). The carbonyl group of this compound is reduced, forming an aminoalcohol (13.2.4), the dehydration of which leads to formation of 1,3a,8-trimethyl- 2,3,3a,8a-tetrahydropyrrolo[2,3b]-5-ethoxyindol (13.2.5). The ethoxy-protecting group is removed by hydrogen bromide, giving a compound with a phenol hydroxyl group (13.2.6), which is reacted with methylisocyanate, giving the desired physostigmine (13.2.7).

Synthesis_57-47-6

[Veterinary Drugs and Treatments]

Physostigmine has been used for the adjunctive treatment of ivermectin toxicity in dogs, as a provocative agent for the diagnosis of narcolepsy in dogs and horses, and as a treatment for anticholinergic toxicity. Because of the potential for serious adverse effects, use of physostigmine as an antidote is generally reserved for very serious toxicity affecting the CNS. Otherwise, safer alternatives such as neostigmine or pyridostigmine are preferred.
While physostigmine has been used to antagonize the CNS depressant effects of benzodiazepines in humans, it should not be used for this purpose because of the potential toxicity and nonspecific action of physostigmine.
[Metabolism]

Physostigmine is the tertiary amine that are rapidly absorbed from the gastrointestinal tract, as are tacrine, donepezil, and galanthamine, whereas quaternary ammonium compounds are poorly absorbed after oral administration. Nevertheless, quaternary ammonium compounds like neostigmine and pyridostigmine are orally active if larger doses are employed. Only the quaternary ammonium inhibitors do not readily enter the CNS. Because of their high lipid solubility and low molecular weight, most of the organophosphates are absorbed by all routes of administration; even percutaneous exposure can result in the absorption of sufficient drug to permit the accumulation of toxic levels of these compounds.
[Purification Methods]

Eserine crystallises from Et2O or *C6H6 and forms an unstable low melting form m 86-87o [Harley-Mason & Jackson J Chem Soc 3651 1954, Wijnberg & Speckamp Tetrahedron 34 2399 1978]. [Beilstein 23/11 V 401.]
Spectrum DetailBack Directory
[Spectrum Detail]

PHYSOSTIGMINE(57-47-6)MS
PHYSOSTIGMINE(57-47-6)1HNMR
PHYSOSTIGMINE(57-47-6)13CNMR
PHYSOSTIGMINE(57-47-6)IR1
PHYSOSTIGMINE(57-47-6)IR2
Well-known Reagent Company Product InformationBack Directory
[Sigma Aldrich]

57-47-6(sigmaaldrich)
[TCI AMERICA]

Physostigmine  free base,>98.0%(LC)(T)(57-47-6)
57-47-6 suppliers list
Company Name: PUSHAN INDUSTRIAL (SHAANXI) CO.,LTD
Tel: +8618291886785 , +8618291886785
Website: www.pushanshiye.com
Company Name: Henan Bao Enluo International TradeCo.,LTD
Tel: +86-17331933971 +86-17331933971 , +86-17331933971
Website: baoenluo.guidechem.com/
Company Name: Biochempartner
Tel: 0086-13720134139
Website: www.biochempartner.com
Company Name: Hubei Jusheng Technology Co.,Ltd.
Tel: 18871490254
Website: www.hubeijusheng.com
Company Name: career henan chemical co
Tel: +86-0371-86658258 +8613203830695 , +8613203830695
Website: www.coreychem.com
Company Name: Antai Fine Chemical Technology Co.,Limited
Tel: 18503026267 , 18503026267
Website: www.chemicalbook.com/ShowSupplierProductsList1980510/0.htm
Company Name: Neostar United (Changzhou) Industrial Co., Ltd.
Tel: +86-0519-85551759 +8613506123987 , +8613506123987
Website: www.neostarunited.com
Company Name: TargetMol Chemicals Inc.
Tel: +1-781-999-5354 +1-00000000000 , +1-00000000000
Website: https://www.targetmol.com/
Company Name: Hefei TNJ Chemical Industry Co.,Ltd.
Tel: +86-0551-65418671 +8618949823763 , +8618949823763
Website: www.tnjchem.com
Company Name: ANHUI WITOP BIOTECH CO., LTD
Tel: +8615255079626 , +8615255079626
Website: www.chemicalbook.com/showsupplierproductslist418627/0_en.htm
Company Name: AFINE CHEMICALS LIMITED
Tel: +86-0571-85134551
Website: www.afinechem.com/index.html
Company Name: Finetech Industry Limited
Tel: +86-27-87465837 +8618971612321 , +8618971612321
Website: https://www.finetechnology-ind.com/
Company Name: Shenzhen Shengda Pharma Limited
Tel: 755-85269922 +8613424394241 , +8613424394241
Website: www.shengdapharm.com
Company Name: Shaanxi Didu New Materials Co. Ltd
Tel: +86-89586680 +86-13289823923 , +86-13289823923
Website: https://www.dideu.com/en/
Company Name: ShenZhen Trendseen Biological Technology Co.,Ltd.
Tel: 13417589054 , 13417589054
Website: www.chemicalbook.com/ShowSupplierProductsList1962465/0.htm
Company Name: SUZHOU SENFEIDA CHEMICAL CO.,LTD
Tel: +86-0512-83500002 +8615195660023 , +8615195660023
Website:
Company Name: Wuhan Topule Biopharmaceutical Co., Ltd
Tel: +8618327326525 , +8618327326525
Website: topule.com/
Company Name: LEAPCHEM CO., LTD.
Tel: +86-852-30606658
Website: www.leapchem.com
Tags:57-47-6 Related Product Information
92-13-7 102518-79-6 51-84-3 64-47-1 57-64-7 57-47-6