【背景及概述】[1] [2]
组胺( histamine) 是一种自体活性物质, 它以无活性结合型存在于肥大细胞和嗜碱性粒细胞的颗粒中。在体内组胺由组氨酸经组氨酸脱羧酶( histidine decarboxylase, HDC) 脱羧基而成,具有多种生物活性作用,包括过敏反应, 炎性反应等。肥大细胞和嗜碱性粒细胞致敏后能通过脱颗粒释放组胺,并与组胺受体结合,从而产生生物学效应,包括过敏性反应和炎症反应。最新研究发现,组胺是免疫反应中重要的调控者。
组胺是一种重要的化学介质,由多种细胞生成,包括肥大细胞,嗜碱性粒细胞,嗜铬细胞,血小板,树突状细胞,以及T细胞等,其功能影响机体的多种生理机能, 包括细胞增殖,分化,造血过程,胚胎发育,组织再生,以及伤口愈合。在不同的微生物源性感染中,组胺广泛存在于各种炎症以及感染性疾病中,主要调控宿主免疫反应,具有正、负双向的调控作用。组胺的活化有赖于其相应的4个受体。按被发现顺序命名为 H1R、 H2R、 H3R 和 H4R。HRs 属 G 蛋白偶联受体( G-protein-coupled receptors, GPCRs) 家族成员,通过偶联激活特异性 G 蛋白进行信号转导。这四种受体在在表达、信号转导及其生理功能等方面均不同: 组胺 1 型受体( histamine 1 receptor, H1R) 属于 G 蛋白偶联受体超家族, 主要分布于内皮和平滑肌等多种细胞,调节血管舒张和支气管收缩。组胺2 型受体( histamine 2 receptor, H2R) 能与 cAMP 系统偶联,主要调 节 胃 酸 分 泌。组 胺 3 型 受 体 ( histamine 3 receptor,H3R) 主要在神经系统作为突触前自身受体的方式进行表达。
组胺4型受体( histamine 4 receptor,H4R) 是最新发现的受体,它与 H3R 有相似的生物学和药理学特性。然而不同的是,H4R 在细胞上的表达更广泛,包括角质形成细胞, 朗格汉斯细胞,中性粒细胞, 淋巴细胞和树突状细胞。最新研究表 明, H4R 敲 除 小 鼠, 其 血 清 中 IL-4 和 α 型 干 扰 素( interferon-α, IFN-α) 分泌浓度显著降低, 同时 Invariant NKT( iNKT) 细胞数量及功能受损。同时, Ohsawa 等研究发现, H1R 和 H4R 拮抗剂的联合使用能抑制皮肤瘙痒和炎症,这种治疗方式可能对慢性皮炎有一定的疗效。
【药理作用】[1]
1. 组胺与自身免疫性疾病
大量研究证实组胺及组胺受体在自身免疫疾病中发挥重要作用。除了肥大细胞可表达组胺受体外, 它还能在类风湿性关节炎患者滑膜细胞中进行表达, 因此组胺同样可以调节滑膜细胞的相关功能。已有研究证实,类风湿性关节炎患者其血清中组胺水平升高。然而, 组胺直接注射到关节腔内并不能促进宿主炎症反应的发生。奇怪的是, 类风湿性关节炎患者,其滑膜液组胺水平比健康对照组低。推测其可能的原因可能与组胺受体表达水平的升高以及组胺消耗的增加有关。这与类风湿性关节炎患者中瘦素水平降低的机制类似。
在所有自身免疫性疾病模型中,自身免疫性脑脊髓膜炎(experimental autoimmune encephalomyelitis,EAE) 作为一个多发性硬化模型, 其研究进展最快。有研究发现, H1R基因是百日咳毒素诱导自身免疫致敏的关键基因。Ma 等发现 H1R缺陷小鼠对 EAE 有重要保护作用, H2R缺陷小鼠也能减弱 EAE 对宿主的损伤。与 H1R缺陷小鼠细胞细胞因子的分泌不同,H2R缺陷小鼠是通过增加单核细胞趋化因子1的分泌发挥保护性作用。然而, HDC 缺陷与 H3R缺陷小鼠都表现为 EAE 临床症状及病理加重。因此,在中枢神经系统的自身免疫性炎症中, H3R可能有抑制炎症的作用。有趣的是,有研究表明肥大细胞缺陷小鼠 EAE 症状减轻, 因此肥大细胞释放组胺可能与 EAE 的发生有关。然而组胺的其它来源途径还需进一步确定。有研究显示,在豚鼠哮喘模型中, H4R受体通过上调脂皮质蛋白( LC-1) 参与其免疫调节和炎症反应。后续研究发现, 小 鼠 哮 喘 模 型 H4R 还 能 通 过 调 节 树 突 状 细 胞( dendritic cells, DCs) 的活化而使宿主致敏。H4R基因在系统性红斑狼疮患者的表达明显上调。另外过敏性鼻炎患者在接触天然花粉后,H2R数量不仅在调节性 T 细胞上表达上调,同时,外周血中 T 淋巴细胞 H2R的表达也增高。组胺在其它自身免疫性疾病患者中的表达也升高, 包括克罗恩病、 溃疡性结肠炎、 关节炎、 哮喘等。组胺是通过其受体发挥损伤作用的,应用相应的组胺受体拮抗剂可以减轻自身免疫性疾病的损伤作用。
2.组胺与炎症
有研究发现,克罗恩病和溃疡性结肠炎患者中, 组胺表达明显升高。Sander 等发现肠道内表达 H1R、 H2R、H4R的细胞有很多种, 包括上皮细胞等。有趣的是, 在这些细胞表面并没有检测到 H3R的表达, 目前, 组胺及组胺受体对调节肠道免疫功能的作用还知之甚少。有研究表明,在 2,4,6-三硝基苯磺酸诱导的急性结肠炎模型中, H4R拮抗剂的使用能减轻大鼠的炎症反应。在这项研究中, 应用 H4R拮抗剂 JNJ 7777120 或者 JNJ 10191584 能使肠道黏膜增厚,从而减轻 大 鼠 肠 道 损 伤。同 时 也 可 使 肿 瘤 坏 死 因 子-α( tumor necrosis factor-α, TNF-α) 的产生减少和减轻中性粒细胞的聚集,这些结果均提示 H4R可能影响该模型的免疫反应。在关节炎动物模型中,HDC 缺陷小鼠的炎症减轻。后续研究发现该现象并不存在于 H1R、 H2R缺陷小鼠, 提示 H3R、H4R在本病的病程中可能具有一定作用。
体内存在多种细胞因子, 参与促进组胺合成。TNF-α、IL-1 可 与 人 粒 细 胞-巨 噬 细 胞 集 落 刺 激 因 子 ( granulocytemacrophage-colony stimulating factor, GM-CSF) 协同诱导嗜碱粒细胞合成组胺,同时,脂多糖( lipopolysaccharide, LPS) 刺激巨噬细胞后可使组胺合成。Dy 等研究发现细胞因子IL-3 能与 LPS 协同促进巨噬细胞合成组胺。有研究发现,一定程度的炎症条件下,由肥大细胞合成和分泌的组胺、 肝素、类胰蛋白酶、细胞因子等能够刺激成纤维细胞增殖以及形成胞外基质积聚,并使组织纤维化。相反的, 组胺的过度增加会加重 TNF-α、IL-1、LPS 对牙龈成纤维细胞的炎症刺激,增强局部组织免疫反应, 进一步加重牙周组织的破坏。组胺能通过刺激牙龈成纤维细胞 IL-2、IL-4 表达升高,间接促使前列腺素 E2 ( prostaglandin E2 ,PGE2 ) 的分泌表达。PGE2 作为一种炎症介质和强效促进骨吸收的刺激因子,能够加速破骨细胞的形成,增强破骨细胞前体的融合,抑制钙化,促进骨吸收。组胺通过脱颗粒现象由肥大细胞和嗜碱性粒细胞释放并与组胺受体结合后,产生生物学效应,使机体发生炎症反应。当炎症进行性加重时, 造成对组织的破坏。在炎症早期阶段,局部组织中分离的组胺参与了早期炎症反应,并促进炎症发展。组胺-组胺受体通路在组胺脱羧酶的作用下被激活,有研究证实,先天缺乏组胺脱羧酶的大鼠,其骨组织只含有少量的破骨细胞,破骨细胞的生成也受到了抑制,这说明组胺与破骨细胞生长以及骨组织损伤关系密切。
3.组胺与感染
组胺的合成与释放可能是感染过程中的一种现象, 但是具体的机制还有待进一步明确。有研究表明动物感染模型与组胺受体和 HDC 缺陷有关, 这可以预测细菌本身与组胺的产生相关。在某些情况下,感染依赖于组胺的产生。有研究证实组胺在小鼠肠道耶尔森氏菌感染中作用显著。另有研究表明组胺可激活与伤口愈合和感染有关的角质形成细胞的功能。组胺介导伤口愈合过程主要是通过 H1R受体发挥作用,其他角质形成细胞也一并参与其中。
有研究证实呼吸道合胞病毒感染后组胺的四种受体水平均升高,其中 H1R 和 H2R 升高更为显著, 提示感染可能通过增加组胺受体水平而引起呼吸道反应。Ishii 等的研究结果提示慢性肝炎肝脏组胺水平明显升高,说明慢性肝炎时肥大细胞释放组胺增多而形成高组胺血症。有研究证实感染 HIV 女性子宫颈病理切片中,肥大细胞数目升高,且 HIV 可以引起组织肥大细胞释放组胺。HIV 抗原可以诱导嗜碱性粒细胞释放组胺, 且组胺的释放量与血液中 CD4 + T 淋巴细胞数成反比,这提示组胺可能与疾病进程有一定相关性。进一步研究表明,HIV 表面 gp120糖蛋白或游离 gp120 可以与 HIV 特异性的 IgE 结合,从而诱导细胞脱颗粒释放 IL-4、组胺等。由于不同疾病组胺受体表达的多样性,内源性组胺可能出现不同的作用。这提示组胺受体拮抗剂可能参与多种疾病的致病过程。通过拮抗体内组胺及组胺受体的作用,有望达到对相关疾病进行干预,调节宿主免疫,从而达到对疾病的治疗的目的。
4.组胺与肿瘤
上皮-间质转化( epithelial-mesenchymal transition, EMT)是癌症进展中的一个关键过程。以往有研究证实部分肿瘤细胞能 产 生 组 胺, 进 而 影 响 肿 瘤 的 生 长 和 侵 袭。Porretti等提出了组胺可能影响肿瘤细胞和正常细胞之间的相互作用,他们评估了正常乳腺组织成纤维细胞中的组胺受体包括 H1R、 H2R、 和 H4R的表达,这与乳腺癌组织中的表达有显著差异。同 样 的 研 究 也 证 实 了 在 肺 和 皮 肤 组 织 中, H1R、H2R、 和 H4R参与了成纤维细胞增殖、 迁移、 伤口愈合、 炎症等过程。研究表明组胺通过上调 H1R和下调 H2R来调节基质金属蛋白酶 2( matrix metalloproteinase 2, MMP2) 的活性。类似的研究同样表明组胺也可改变鼻和滑膜成纤维细胞中基质金属蛋白酶产生,通过影响正常细胞及肿瘤细胞中基质金属蛋白酶基因和蛋白的表达来影响肿瘤细胞的侵袭力。
此外,上述研究还证实成纤维细胞的迁移与组胺的表达存在剂量依赖性,高剂量的组胺可能抑制成纤维细胞的迁移活性,同时避免由成纤维细胞诱导的肿瘤细胞 EMT。有证据表明组胺对肺纤维化成纤维细胞的迁移能力和炎症组织中免疫细胞的功能也具有重要影响。Cai 等从体外和体内试验探讨了 H4R 激动剂和拮抗剂对非小细胞肺癌( non-small cell lung cancer, NSCLC) EMT进程的影响。其结果显示 H4R受体的激活是通过 TGF-β 信号通路下调细胞内 cAMP 和抑制 NSCLC 中 EMT 的进程发挥作用。由此推测 H4R受体可能是 NSCLC 治疗的新的治疗靶点。Martinel 等通过将 H1R和 H4R激动剂作用于受 γ 辐射的乳腺癌细胞, 发现组胺增加了乳腺癌细胞的放射敏感性。这里组胺及其受体激动剂可能是通过抑制过氧化氢酶和超氧化物歧化酶的活性增加了活性氧的释放, 从而增加了辐射诱导的 DNA 氧化损伤,DNA 双链断裂, 细胞凋亡和衰老。因此,组胺可以作为一个潜在提高肿瘤放疗疗效的辅助药物。
【应用及发展前景】[1]
组胺及其受体的相互作用不仅参与调节了机体的许多重要的生理过程: 如神经内分泌调节、 学习记忆、 体温调节、胃肠循环调节等, 还参与了许多病理过程: 如炎症反应、 变态反应、 肿瘤性疾病。组胺是研究较为广泛的自体活性物质之一,充分了解组胺及其受体的相互作用, 有利于许多疾病的临床治疗。代和第二代 H1R拮抗剂一直是变应性鼻炎治疗的一线药物。选择性 H2R激动剂可能有助于减轻自身免疫性疾病及超敏反应的临床症状, 而选择性 H1R、 H2R及 H4R拮抗剂有利于肿瘤及炎症性疾病的治疗。尽管组胺在临床的应用已逐渐减少,但其受体激动和阻断药物在临床上却有重大价值,因此组胺及其受体的相互作用机制值得进一步深入研究和探讨。
【主要参考资料】
[1]冯小倩,武曦,谭颖徽.组胺及组胺受体的研究进展[J].中华肺部疾病杂志(电子版),2015,8(02):234-237.
[2]李凤林,李文汉.组胺受体研究的进展[J].哈尔滨医科大学学报,1983(02):85-89.