ChemicalBook >> CAS DataBase List >>Quicklime

Quicklime

CAS No.
1305-78-8
Chemical Name:
Quicklime
Synonyms
CaO;CAUSTIC;LIME;QUICKLIME;Calcium oxide powder;Calcination of calcium;CALX;cml21;cml31;calxyl
CBNumber:
CB00127374
Molecular Formula:
CaO
Lewis structure
cao lewis structure
Molecular Weight:
56.08
MDL Number:
MFCD00010911
MOL File:
1305-78-8.mol
MSDS File:
SDS
Last updated:2025-01-20 19:13:51

Quicklime Properties

Melting point 2570 °C
Boiling point 2850 °C (lit.)
bulk density 800-1200kg/m3
Density 3.3 g/mL at 25 °C (lit.)
refractive index 1.83
Flash point 2850°C
storage temp. no restrictions.
solubility 1.65g/l Risk of violent reaction.
form powder
color White to yellow-very slightly beige
Specific Gravity 3.3
PH 12.6 (H2O, 20℃)(saturated solution)
Odor wh. or gray cryst. or powd., odorless
Water Solubility REACTS
Sensitive Air & Moisture Sensitive
Crystal Structure Cubic
crystal system Cube
Merck 14,1686
Space group Fm3m
Lattice constant
a/nmb/nmc/nmα/oβ/oγ/oV/nm3
0.47760.47760.47769090900.1089
Dielectric constant 2.2(Ambient)
Exposure limits ACGIH: TWA 2 mg/m3
OSHA: TWA 5 mg/m3
NIOSH: IDLH 25 mg/m3; TWA 2 mg/m3
Stability Stability Stable, but absorbs carbon dioxide from the air. Incompatible with water, moisture, fluorine, strong acids.
InChIKey ODINCKMPIJJUCX-UHFFFAOYSA-N
CAS DataBase Reference 1305-78-8(CAS DataBase Reference)
FDA 21 CFR 184.1210; 582.1210; 582.5210; 101.30; 182.20; 582.20
Substances Added to Food (formerly EAFUS) CALCIUM OXIDE
SCOGS (Select Committee on GRAS Substances) Calcium oxide
EWG's Food Scores 1
FDA UNII C7X2M0VVNH
NIST Chemistry Reference Calcium monoxide(1305-78-8)
EPA Substance Registry System Calcium oxide (1305-78-8)

SAFETY

Risk and Safety Statements

Symbol(GHS)  GHS hazard pictogramsGHS hazard pictograms
GHS05,GHS07
Signal word  Danger
Hazard statements  H315-H318-H335
Precautionary statements  P280-P302+P352-P305+P351+P338+P310
Hazard Codes  C,Xi
Risk Statements  34-41-37/38
Safety Statements  26-36/37/39-45-25-39
RIDADR  1910
OEB B
OEL TWA: 2 mg/m3
WGK Germany  1
RTECS  EW3100000
10-21-34
TSCA  Yes
HazardClass  8
PackingGroup  III
HS Code  28259019
Hazardous Substances Data 1305-78-8(Hazardous Substances Data)
IDLA 25 mg/m3
NFPA 704
0
3 1

Quicklime price More Price(48)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 208159 Calcium oxide ReagentPlus , 99.9% trace metals basis 1305-78-8 25g $54.7 2024-03-01 Buy
Sigma-Aldrich 208159 Calcium oxide ReagentPlus , 99.9% trace metals basis 1305-78-8 100g $145 2024-03-01 Buy
Sigma-Aldrich 1.02109 Calcium oxide from marble small lumps ~3-20 mm 1305-78-8 1kg $157 2024-03-01 Buy
Sigma-Aldrich 1.02109 Calcium oxide from marble small lumps ~3-20 mm 1305-78-8 25kg $2130 2024-03-01 Buy
Alfa Aesar 010684 Calcium oxide, Puratronic?, 99.998% (metals basis, excluding other alkaline earth and alkali metals 130ppm max) 1305-78-8 2g $46.2 2023-06-20 Buy
Product number Packaging Price Buy
208159 25g $54.7 Buy
208159 100g $145 Buy
1.02109 1kg $157 Buy
1.02109 25kg $2130 Buy
010684 2g $46.2 Buy

Quicklime Chemical Properties,Uses,Production

Chemical properties

It appears as white cubic crystalline powder. Industrial products often contain magnesia, alumina and ferric oxide and other impurities so exhibit dark gray, light yellow or brown. It is soluble in acid.

Uses

1.  Calcium oxide can be used in the manufacture of calcium carbide, soda ash, bleaching powder, used as building materials, refractoriness’, desiccant and soil conditioner and calcium fertilizer
2.  It can be used as an analysis reagent and flux agent for manufacturing fluorescence powder.
3.  It can be used in the manufacture of calcium carbide, soda ash, bleaching powder, also used for leather, waste water purification
4.  Calcium oxide can be used as building materials, metallurgical flux agent and the major raw materials for the manufacturing of calcium hydroxide and a variety of calcium compounds. It is also the inexpensive alkali in the chemical industry. It is widely used in pesticides, paper, food, petrochemical, leather, waste water purification and so on. It can also be used for the drying of the laboratory ammonia and alcohol dehydration.
5.  Use as drug carriers.
6.  Uses as analysis reagents; Calcium oxide can be applied to steel, pesticides, pharmaceuticals, non-ferrous metals, fertilizers, leather and manufacturing of calcium hydroxide, drying of laboratory ammonia, carbon dioxide absorbent and alcohol dehydration.

Content analysis

Approximately 1 g of the sample was burned to constant weight (accurately weighed) and dissolved in 20 ml of dilute hydrochloric acid solution (TS-117). After cooling, dilute to 500.0ml with water and mix uniformly. Take 50 mL of this solution into the appropriate container, add 50ml of water. Add 30 mL 0.05ml/L disodium EDTA via a 50 mL burette with stirring (preferably with a magnetic stirrer); further add 15ml sodium hydroxide solution (TS-224) and hydroxy naphthol blue indicator (300 mg) for continue titration to the blue end. Per ml of 0.05 mol/L of EDTA corresponds to 2.804 mg of calcium oxide.

Identification test

1 g of the sample was shaken with 20 ml of water, and the acetic acid test solution (TS-1) was added to dissolve the sample. The calcium test (IT-10) of this solution was positive.

Toxicity

ADI is not subject to restrictive regulations (FAO/WHO, 2001).
GRAS (FDA, §18.5210; §184.12l0, 2000);
See Calcium Oxide.
It can stimulate the mucous membrane, causing sneezing, in particular, can cause fat saponification so the water will be absorbed by the skin, dissolving the protein with stimulating and corroding the tissue. It has strong effect against the eye mucosa, being able cause oral and nasal mucosa superficial ulcers, and sometimes there may be perforation of the nasopharyngeal diaphragm, deep respiratory tract disease. Inhalation of lime dust may cause pneumonia.
In case of inhalation of dust, it can be treated via inhaling water vapor (add some of the citric acid crystals to the water in advance) and coat the mustard cream in the chest. If falling into the eyes, we can open up the eyes and immediately rinse with running water for 10~30 min and then rinse with 5% ammonium chloride solution. When the skin burns, it can be used with 5% citric acid, tartaric acid, acetic acid or salt solution of mineral oil or vegetable oil to remove the lime residue sticking to the skin.
The maximum allowable concentration in the United States is 5 mg/m3.
During operation, it should be paid attention to the protection of respiratory organs. Wear uniforms manufactured using dust-proof fiber, gloves and closed dust-proof glasses. Coat the ointment-containing grease. Clean after work. During the preparation and application, it should be prevented of dust inhalation.

Production method

Calcium carbonate calcination first apply calcium carbonate for reaction with hydrochloric acid to generate calcium chloride, followed by addition of ammonia for neutralization, standing for precipitation and filtration, followed by adding sodium bicarbonate for reaction to generate calcium carbonate precipitate. It is further subject to centrifugal separation dehydration, drying and calcination, followed by crushing and screening to obtain the finished product of medicinal calcium oxide. Its reaction is:
CaCO3 + 2HCl → CaCl2 + CO2 + H2O
CaCl2 + 2NH3? H2O? Ca (OH) 2 + 2NH4Cl
Ca (OH) 2 + NaHCO3 → CaCO3 + NaOH + H2O
CaCO3 [△]→CaO + CO2 ?.
Limestone calcination method: crush the coarse limestone to 150 mm, and screen for the fine residue below 30 to 50 mm. Anthracite or coke required a particle size to be below 50 mm, which contains not too much low melting point ash content. The amount of anthracite or coke is 7.5% to 8.5% of that of limestone by weight. The selected limestone and fuel are timely and quantitatively supplied from the kiln crown to the kiln, further calcinated at 900~1200 ℃ and then lead to the finished product after cooling. In the calcination process, carbon dioxide is produced as by-product. Its reaction equation is:
CaCO3 [△]→CaO + CO2 .

Usage limitation

GB 14880-94 (in terms of Ca, g/kg): beverages, cereals and their products, 1.6~3.2; infant food, 3.0~6.0.
GB 2760-2001: Preparation of water 100mg/L (36mg/L in terms of Ca).

Hazards & Safety Information

Category Corrosive items
Toxic classification poisoning
Acute toxicity Intraperitoneal-mouse LD50: 3059 mg/kg
Explosive and hazardous properties it is corrosive to the skin; powdered calcium oxide can be mixed with water to be explode; its mixture with alcohol can be flammable and explosive upon heating
Flammable hazardous characteristics exothermic upon water with its heat being able to cause organic combustion; one of the air pollutants with heating together with alcohol mixture being able to cause combustion
Storage and transportation characteristics Treasury: Ventilated, low temperature and drying; Store separately from combustible materials, acids and phosphorus pentoxide.
Fire extinguishing agent mist water, sand
Occupational Standard TLV-TWA 2 mg/m3; STEL 5 mg/m3

Description

Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. Lime does not occur naturally since it reacts so readily with water (to form hydrated lime) and carbon dioxide (to form limestone). It is produced from calcium carbonate, limestone, or oyster shells by calcination at temperatures of 1,700-2,450℃.
Calcium Oxide is a solid with a very high affinity for water - it will react with water in the air, or in your skin or anywhere it can and form calcium hydroxide. This reaction is exothermic so it releases a lot of heat while it is reacting - there fore as well as being corrosive and causing significant skin irritation, calcium oxide's reaction with water can also cause burns. Calcium hydroxide is basically hydrated calcium oxide. It is alkali so can be corrosive. In solution it makes limewater.
CaO is not found pure in nature but rather is contained in various abundant minerals (i.e. calcite, aragonite, limestone, marble) but vary greatly in their purity (impurities usually include magnesia, iron, alumina, silica, sulfur). Of these iron and sulfur are most troublesome (i.e. where clarity is important in glass). Lime minerals vary in the degree of crystallization and cohesion of the crystalline mass and the homogeneity of the matrix.
Calcium oxide is the principle flux in medium and high temperature glazes, beginning its action (within the glaze) around 1100C. It must be used with care in high-fire bodies because its active fluxing action can produce a body that is too volatile (melting if slightly overfired).
Lime, or calcium oxide, is a principle ingredient in the production of Portland cement, the basis for most mortars and concrete. Hydrated or ‘slaked’ lime is the chemical calcium hydroxide. This chemical is also used in mortars. Both types of lime are strong bases and are also used in food production (calcium hydroxide is commonly used in making corn tortillas), petroleum refining and sewage treatment. In the household it is used by aquarium hobbyists to add bioavailable calcium to fish tanks. It is also found in hair relaxers.

Chemical Properties

Calcium oxide, CaO, occurs as white or grayish-white lumps or granular powder. The presence of iron gives it a yellowish or brownish tint.

Physical properties

Calcium oxide is a white caustic crystalline alkali substance that goes by the common name lime. The term lime is used both generically for several calcium compounds and with adjectives to qualify different forms of lime. This entry equates lime, also called quicklime or burnt lime, with the compound calcium oxide. Hydrated lime, made by combining lime with water, is calcium hydroxide and is often referred to as slaked lime (Ca(OH)2). Dolomite limes contain magnesium as well as calcium. Limestone is the compound calcium carbonate. The term lime comes from the Old English word l?m for a sticky substance and denotes lime’s traditional use to produce mortar. Calx was the Latin word for lime and was used to name the element calcium.

History

Calcium oxide dates from prehistoric times. It is produced by heating limestone to drive off carbon dioxide in a process called calcination: CaCO3(s) CaO(s) + CO2(g). At temperatures of several hundred degrees Celsius, the reaction is reversible and calcium oxide will react with atmospheric carbon dioxide to produce calcium carbonate. Efficient calcium oxide production is favored at temperatures in excess of 1,000°C. In prehistoric times limestone was heated in open fires to produce lime. Over time, lined pits and kilns were used to produce lime. Brick lime kilns were extensively built starting in the 17th century and the technology to produce lime has remained relatively constant since then.

Uses

The major uses of lime are metallurgy, flue gas desulfurization, construction, mining, papermaking, and water treatment. About one third of calcium oxide production in the United States is used for metallurgical processes, principally in the iron and steel industry. Calcium oxide is used to remove impurities during the refining of iron ore. Calcium oxide combines with compounds such as silicates, phosphates, and sulfates contained in iron ores to form slag. Lime is also used for purification in other metal refining and to control pH in mining processes such as leaching and precipitation. The calcium oxide is also used in remediation of mine wastes to recover cyanides and to neutralize acid mine drainage.

Uses

Calcium Oxide is a general food additive consisting of white granules or powder of poor water solubility. it is obtained by heating limestone (calcium carbonate) in a furnace. it is also termed lime or quicklime. it is used as an anticaking agent, firming agent, and nutritive supple- ment in applications such as grain products and soft candy.

Uses

In bricks, plaster, mortar, stucco and other building and construction materials; manufacture of steel, aluminum, magnesium, and flotation of non-ferrous ores; manufacture of glass, paper, Na2CO3 (Solvay process), Ca salts and many other industrial chemicals; dehairing hides; clarification of cane and beet sugar juices; in fungicides, insecticides, drilling fluids, lubricants; water and sewage treatment; in laboratory to absorb CO2 (the combination with NaOH is known as soda-lime, q.v.).

Production Methods

Calcium oxide is commercially obtained from limestone. The carbonate is roasted in a shaft or rotary kiln at temperatures below 1,200°C until all CO2 is driven off. The compound is obtained as either technical, refractory or agri cultural grade product. The commercial product usually contains 90 to 95% free CaO. The impurities are mostly calcium carbonate, magnesium carbon ate, magnesium oxide, iron oxide and aluminum oxide.

Definition

ChEBI: Calcium oxide is a member of the class of calcium oxides of calcium and oxygen in a 1:1 ratio. It has a role as a fertilizer.

Aroma threshold values

Aroma at 1.0%: intense, high impacting fresh sweet juicy lime, citral with a distilled lime note, cool and refreshing with green juicy nuances.

Taste threshold values

Taste characteristics at 10 ppm in 5% sugar and 0.1% CA; intense fresh tangy lime juice, citrus citral candy lime character with notes of West Indian lime

General Description

Calcium oxide appears as an odorless, white or gray-white solid in the form of hard lumps. A strong irritant to skin, eyes and mucous membranes. Used in insecticides and fertilizers.

Air & Water Reactions

Crumbles on exposure to moist air. Reacts with water to form corrosive calcium hydroxide, with evolution of much heat. Temperatures as high as 800° C have been reached with addition of water (moisture in air or soil). The heat of this reaction has caused ignition of neighboring quantities of sulfur, gunpowder, wood, and straw [Mellor 3: 673 1946-47].

Reactivity Profile

A base and an oxidizing agent. Neutralizes acids with generation of heat. Nonflammable, but will support combustion by liberation of oxygen, especially in the presence of organic materials. Reacts very violently with liquid hydrofluoric acid [Mellor 2, Supp. 1:129 1956]. Reacts extremely violently with phosphorus pentaoxide when reaction is initiated by local heating [Mellor 8 Supp.3:406 1971].

Hazard

Evolves heat on exposure to water. Danger- ous near organic materials. Upper respiratory tract irritant.

Health Hazard

Causes burns on mucous membrane and skin. Inhalation of dust causes sneezing.

Fire Hazard

Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. Vapors may accumulate in confined areas (basement, tanks, hopper/tank cars etc.). Substance will react with water (some violently), releasing corrosive and/or toxic gases and runoff. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated or if contaminated with water.

Flammability and Explosibility

Not classified

reaction suitability

reagent type: catalyst
core: calcium

Agricultural Uses

Calcium oxide (CaO) is a white powder with a neutralizing value or calcium carbonate equivalent (CCE) of 179%, compared to 100% for calcium carbonate (CaCO3). For quick results, either calcium oxide or calcium hydroxide [Ca(OH)2] is used. Calcium oxide is also known as lime, unslaked lime, burned lime or quicklime. Roasting CaCO3 in a furnace makes calcium oxide. A complete mixing of calcium oxide with soil is difficult because it cakes due to absorption of water.

Industrial uses

Lime is the most widely used reagent in the mineral industry for flotation of sulfides and, in some cases, non-sulfide minerals. The word “lime” is a general term used to describe any kind of calcareous material or finely divided form of limestone and dolomite. In more strict chemical terms, lime is calcinated limestone known as calcium oxide (CaO), quicklime or unslaked lime.The slaked or hydrated lime Ca(OH)2 is the form of lime primarily used in mineral flotation. Production of high-calcium lime is based on calcination of limestone at a temperature of 1100–1300 °C in kilns.
CaCO3+heat--->CaO+CO2 For high-magnesium (dolomitic) limestone, the calcination reaction (at 1000–1200 °C) is CaCO3·MgCO3 (limestone) + heat--->CaOMgO (quicklime-2CO2)

Safety Profile

A caustic and irritating material. See also CALCIUM COMPOUNDS. A common air contaminant. A powerful caustic to living tissue. The powdered oxide may react explosively with water. Mixtures with ethanol may igmte if heated and thus can cause an air-vapor explosion. Violent reaction with (I3203 + CaCl2) interhalogens (e.g., BF3, CIF3), F2, HF, P2O5 + heat, water. Incandescent reaction with liquid HF. Incompatible with phosphoms(V) oxide.

Potential Exposure

Calcium oxide is used as a refractory material; a binding agent in bricks; plaster, mortar, stucco, and other building materials. A dehydrating agent, a flux in steel manufacturing, and a labora

First aid

If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin,remove contaminated clothing and wash immediately withsoap and water. Seek medical attention immediately. If thischemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart actionhas stopped. Transfer promptly to a medical facility. Whenthis chemical has been swallowed, get medical attention. Ifvictim is conscious, administer water or milk. Do not inducevomiting. Medical observation is recommended for 24-48 hafter breathing overexposure, as pulmonary edema may bedelayed. As first aid for pulmonary edema, a doctor or authorized paramedic may consider administering a corticosteroidspray.

storage

Color Code—Green: General storage may be used.Prior to working with calcium oxide you should be trainedon its proper handling and storage. Should be stored on dryflooring in a fire-resistant room, well protected from theweather. The area should be cool and adequately ventilated.Store in containers protected from physical damage, acidsand oxidizing materials, such as permanganate, dichromate,or chlorine.

Shipping

UN1910 Calcium oxide, Hazard class: 8; Labels: 8-Corrosive material.

Incompatibilities

The water solution is a medium strong base. Reacts with water, forming calcium hydroxide and sufficient heat to ignite nearby combustible materials. Reacts violently with acids, halogens, metals.

Waste Disposal

Pretreatment involves neutralization with hydrochloric acid to yield calcium chloride. The calcium chloride formed is treated with soda ash to yield the insoluble calcium carbonate. The remaining brine solution may be discharged into sewers and waterways

Global( 429)Suppliers
Supplier Tel Email Country ProdList Advantage
Hebei Weibang Biotechnology Co., Ltd
+8615531157085 abby@weibangbio.com China 8806 58
Shaanxi Dideu Medichem Co. Ltd
+86-29-81148696 +86-15536356810 1022@dideu.com China 3882 58
Hebei Mujin Biotechnology Co.,Ltd
+86 13288715578 +8613288715578 sales@hbmojin.com China 12831 58
Hebei Chuanghai Biotechnology Co,.LTD
+86-13131129325 sales1@chuanghaibio.com China 5889 58
Yujiang Chemical (Shandong) Co.,Ltd.
+86-17736087130 +86-18633844644 catherine@yjchem.com.cn China 992 58
Chemson Industrial (Shanghai) Co., Ltd.
86-21-65208861- 8007 sales1@chemson.com.cn CHINA 117 58
Hubei xin bonus chemical co. LTD
86-13657291602 linda@hubeijusheng.com CHINA 22963 58
Chongqing Chemdad Co., Ltd
+86-023-6139-8061 +86-86-13650506873 sales@chemdad.com China 39894 58
CONIER CHEM AND PHARMA LIMITED
+8618523575427 sales@conier.com China 49374 58
Beijing CommScope Huiwei Technology Co., Ltd
86-18810111057 summer@kphwchem.com CHINA 51 58

Related articles

View Lastest Price from Quicklime manufacturers

Image Update time Product Price Min. Order Purity Supply Ability Manufacturer
Sodium tetraborate pentahydrate pictures 2023-08-21 Sodium tetraborate pentahydrate
12179-04-3
1kg 99% 100tons Anhui Ruihan Technology Co., Ltd
FLUXING LIME LIME, CAUSTIC BURNT LIME CALX CALCIUM (II) OXIDE CALCIUM OXIDE airlock caloxolcp2 Calcium oxide puriss., meets analytical specification of FCC, 96-100.5% (ex ignited substance), powder (fine) Calcium oxide ReagentPlus(R), 99.9% trace metals basis Calcium oxide Vetec(TM) reagent grade Calcium oxide, 99.995% trace metals basis, excluding other alkaline earth and alkali metals Calcium oxide, 99.95% trace metals basis Calcium oxide from marble small lumps ~3-20 mm Calcium Oxide, Meets analytical specification of FCC caloxolw3 caloxolw3[qr] calx[qr] calxusta[qr] calxyl calxyl[qr] chauxvive[qr] cml21 cml31 desicalp Dynacal Fused calcium oxide gebrannterkalk[qr] KM pebble lime Lime, burned Lime, unslaked lime,burned lime,burned[qr] lime[qr] Oxyde de calcium oxydedecalcium oxydedecalcium[french][qr] pebblelime quicklime[qr] rhenosorbc rhenosorbc[qr] rhenosorbf rhenosorbf[qr] unslakedlime unslakedlime[qr] Wapniowy tlenek wapniowytlenek wapniowytlenek[polish][qr] CalciuM oxide, extra pure, 96% 1KG Calcium oxide, 99.95% (metals basis) Calcium oxide, Puratronic(R), 99.998% (metals basis, excluding other alkaline earth and alkali metals 130ppm max) CALCIUM OXIDE POWDER pure Calcium Oxide, powder(quick lime) Calcium oxide, Puratronic, 99.998% (metals basis) Lime, Quicklime Calcium oxide, Lime, Quicklime Calcium oxide, 96%, extra pure Calcium oxide, 97+%, powder, for analysis