ChemicalBook >> CAS DataBase List >>Poly(acrylic acid)

Poly(acrylic acid)

CAS No.
9003-01-4
Chemical Name:
Poly(acrylic acid)
Synonyms
PAA;9003-1-4;mw;VINYL RESIN;Acrylate polymer;ACRYLIC ACID POLYMER;CARBOPOL 934;CARBOPOL 941;Acrylicresin;KABOMU
CBNumber:
CB8708560
Molecular Formula:
C5H10O2
Molecular Weight:
102.1317
MDL Number:
MFCD00084394
MOL File:
9003-01-4.mol
Last updated:2024-10-30 18:52:02

Poly(acrylic acid) Properties

Melting point 95 °C
Boiling point 116 °C
Density 1.2 g/mL at 25 °C
Tg 106
vapor pressure 2.64-3.57hPa at 20-25℃
refractive index n20/D 1.442
Flash point 100 °C
storage temp. 2-8°C
solubility Swellable in water and glycerin and, after neutralization, in ethanol (95%). Carbomers do not dissolve but merely swell to a remarkable extent, since they are three-dimensionally crosslinked microgels.
form Powder
color White
PH 2.5 -3.0 (1% water solution)
Viscosity 250-500cp (25C)
Viscosity 400-1,200cp (25C)
Viscosity 500-1,500cp (25C)
Viscosity 700cp (4% solution in water)
Water Solubility Soluble in water.
Dielectric constant 2.7 - 4.5(0.0℃)
InChIKey WLAMNBDJUVNPJU-UHFFFAOYSA-N
LogP 0.23-0.27 at 20℃ and pH3.59-3.63
Indirect Additives used in Food Contact Substances POLY(ACRYLIC ACID)
FDA 21 CFR 701.3
EWG's Food Scores 1
FDA UNII 73861X4K5F
IARC 3 (Vol. 19, Sup 7) 1987
EPA Substance Registry System Polyacrylic acid (9003-01-4)

SAFETY

Risk and Safety Statements

Symbol(GHS)  GHS hazard pictograms
GHS08
Signal word  Danger
Hazard statements  H340-H350
Precautionary statements  P201-P202-P280-P308+P313-P405-P501
Hazard Codes  C,T,Xi
Risk Statements  45-46-34-36/37/38
Safety Statements  53-45-36-27-26
WGK Germany  1
RTECS  AT4680000
TSCA  Yes
HS Code  39069090
Toxicity LD50 oral in rat: 2500mg/kg
NFPA 704
0
0 0

Poly(acrylic acid) price More Price(43)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 181285 Poly(acrylic acid) average Mv ~450,000 9003-01-4 5g $57.2 2024-03-01 Buy
Sigma-Aldrich 181285 Poly(acrylic acid) average Mv ~450,000 9003-01-4 100g $207 2024-03-01 Buy
Alfa Aesar 044669 Poly(acrylic acid), 25 wt% soln. in water 9003-01-4 100g $51.6 2024-03-01 Buy
Alfa Aesar 044669 Poly(acrylic acid), 25 wt% soln. in water 9003-01-4 500g $168 2024-03-01 Buy
scipoly 600 Poly(acrylic acid) 9003-01-4 50g $44 2024-07-03 Buy
Product number Packaging Price Buy
181285 5g $57.2 Buy
181285 100g $207 Buy
044669 100g $51.6 Buy
044669 500g $168 Buy
600 50g $44 Buy

Poly(acrylic acid) Chemical Properties,Uses,Production

Description

For a description of unrelated compounds expanded by twocarbon units,Poly acrylic acid (PAA or Carbomer) is generic name for synthetic high molecular weight polymers of acrylic acid. They may be homopolymers of acrylic acid, crosslinked with an allyl ether pentaerythritol, allyl ether of sucrose or allyl ether of propylene. In a water solution at neutral pH, PAA is an anionic polymer, i.e. many of the side chains of PAA will lose their protons and acquire a negative charge. This makes PAAs polyelectrolytes, with the ability to absorb and retain water and swell to many times their original volume. Dry PAAs are found in the market as white and fluffy powders. Carbomer codes (910, 934, 940, 941 and 934P) are an indication of molecular weight and the specific components of the polymer. For many applications PAAs are used in form of alkali metal or amonium salts e.g. sodium polyacrylate.

Description

Poly (acrylic acid) (PAA) is hygroscopic, brittle and colorless in nature with Tg at nearly 106oC. At temperatures above 200 to 250oC, it loses water and becomes an insoluble crosslinked polymer anhydride. Solubility of dried PAA in water increases with rise in temperatures. Concentrated solutions of PAA in water is thixotropic in nature.
Polyacrylic acid (PAA) is a hydrophilic colloidal solution, similar in properties to water-soluble natural gums. It is a clear, colorless, viscous stable solution. Applications include the modification of aqueous formulations for such end uses as cleaners, binders, adhesives, and emulsion paints. The sodium, potassium, and ammonium salts are effective thickeners and dispersants useful in both natural and synthetic latex systems. PAA in ceramic applications improves dry strength, dispersant action, and improved workability of the clays. PAA is stable to hydrolysis and is not susceptible to bacterial degradation.

Chemical Properties

Carbomers are white-colored, ‘fluffy’, acidic, hygroscopic powders with a characteristic slight odor. A granular carbomer is also available (Carbopol 71G).

Chemical Properties

white powder

Uses

Polyacrylic acid is used in disposable diapers and in ion exchange resins. It is also used to study solute diffusion in polyvinyl alcohol/polyacrylic acid copolymer hydrogel. It is also employed as a thickening, suspending, emulsifying and dispersing agent in pharmaceuticals, cosmetics, adhesives and paints. Further, it is used for the preparation of poly(N-isopropylacrylamide)-block-polyacrylic acid copolymer which responds to both temperature and pH stimuli. In addition to this, it is used in preparing block copolymer of oligo (methyl methacrylate)/PAA for micellar delivery of hydrophobic drugs.

Uses

Applications of PAA may include: · to study solute diffusion in Polyvinyl alcohol/PAA copolymer hydrogel · synthesizing poly(N-isopropylacrylamide)-block-PAA copolymer which responds to both temperature and pH stimuli · in preparing block copolymer of oligo (methyl methacrylate)/PAA for micellar delivery of hydrophobic drugs · as thickening agent for adhesives

Uses

carboxypolymethylene is a binder, film-former and emulsion stabilizer. It can also help increase product viscosity.

Production Methods

Carbomers are synthetic, high-molecular-weight, crosslinked polymers of acrylic acid. These acrylic acid polymers are crosslinked with allyl sucrose or allyl pentaerythritol. The polymerization solvent used previously was benzene; however, some of the newer commercially available grades of carbomer are manufactured using either ethyl acetate or a cyclohexane–ethyl acetate cosolvent mixture. The Carbopol ETD and Carbopol Ultrez polymers are produced in the cosolvent mixture with a proprietary polymerization aid.

Application

Poly acrylic acid and its derivatives are used in disposable diapers,ion exchange resins and adhesives. They are also popular as a thickening, dispersing, suspending and emulsifying agents in pharmaceuticals, cosmetics and paints. PAA inactivates the antiseptic chlorhexidine gluconate.

Definition

ChEBI: An acrylic macromolecule, composed of acrylic acid repeating units.

brand name

Carbopol 934 (Noveon).

General Description

Poly(acrylic acid) solution (PAA) is an anionic polymer that can be synthesized by the free radical polymerization of acrylic acid. It has a swelling nature that tends to absorb and retain the water. Its high ion exchange capacity makes it useful in the formation of membranes.

Pharmaceutical Applications

Carbomers are used in liquid or semisolid pharmaceutical formulations as rheology modifiers. Formulations include creams, gels, lotions and ointments for use in ophthalmic, rectal, topical and vaginal preparations. Carbomer grades with residual benzene content greater than 2 ppm do not meet the specifications of the PhEur 6.4 monograph. However, carbomer having low residuals of other solvents than the ICH-defined ‘Class I OVI solvents’ may be used in Europe. Carbomer having low residuals of ethyl acetate, such as Carbopol 971P NF or Carbopol 974P NF, may be used in oral preparations, in suspensions, capsules or tablets. In tablet formulations, carbomers are used as controlled release agents and/or as binders. In contrast to linear polymers, higher viscosity does not result in slower drug release with carbomers. Lightly crosslinked carbomers (lower viscosity) are generally more efficient in controlling drug release than highly crosslinked carbomers (higher viscosity). In wet granulation processes, water, solvents or their mixtures can be used as the granulating fluid. The tackiness of the wet mass may be reduced by including talc in the formulation or by adding certain cationic species to the granulating fluid. However, the presence of cationic salts may accelerate drug release rates and reduce bioadhesive properties. Carbomer polymers have also been investigated in the preparation of sustained-release matrix beads, as enzyme inhibitors of intestinal proteases in peptide-containing dosage forms, as a bioadhesive for a cervical patch and for intranasally administered microspheres, in magnetic granules for site-specific drug delivery to the esophagus, and in oral mucoadhesive controlled drug delivery systems. Carbomers copolymers are also employed as emulsifying agents in the preparation of oil-in-water emulsions for external administration. Carbomer 951 has been investigated as a viscosity-increasing aid in the preparation of multiple emulsion microspheres. Carbomers are also used in cosmetics. Therapeutically, carbomer formulations have proved efficacious in improving symptoms of moderate-to-severe dry eye syndrome.

Safety

Carbomers are used extensively in nonparenteral products, particularly topical liquid and semisolid preparations. Grades polymerized in ethyl acetate may also be used in oral formulations. There is no evidence of systemic absorption of carbomer polymers following oral administration. Acute oral toxicity studies in animals indicate that carbomer 934P has a low oral toxicity, with doses up to 8 g/kg being administered to dogs without fatalities occurring. Carbomers are generally regarded as essentially nontoxic and nonirritant materials; there is no evidence in humans of hypersensitivity reactions to carbomers used topically.
LD50 (guinea pig, oral): 2.5 g/kg for carbomer 934
LD50 (guinea pig, oral): 2.5 g/kg for carbomer 934P
LD50 (guinea pig, oral): 2.5 g/kg for carbomer 940
LD50 (mouse, IP): 0.04 g/kg for carbomer 934P
LD50 (mouse, IP): 0.04 g/kg for carbomer 940
LD50 (mouse, IV): 0.07 g/kg for carbomer 934P
LD50 (mouse, IV): 0.07 g/kg for carbomer 940
LD50 (mouse, oral): 4.6 g/kg for carbomer 934P
LD50 (mouse, oral): 4.6 g/kg for carbomer 934
LD50 (mouse, oral): 4.6 g/kg for carbomer 940
LD50 (rat, oral): 10.25 g/kg for carbomer 910
LD50 (rat, oral): 2.5 g/kg for carbomer 934P
LD50 (rat, oral): 4.1 g/kg for carbomer 934
LD50 (rat, oral): 2.5 g/kg for carbomer 940
LD50 (rat, oral): > 1g/kg for carbomer 941
No observed adverse effect level (NOAEL) (rat, dog, oral): 1.5 g/kg for carbomer homopolymer type B.

Solubility in organics

Dicoane, ethanol, methanol, water

Solubility in organics

Dioxane, ethanol, methanol, water

storage

Carbomers are stable, hygroscopic materials that may be heated at temperatures below 1048℃ for up to 2 hours without affecting their thickening efficiency. However, exposure to excessive temperatures can result in discoloration and reduced stability. Complete decomposition occurs with heating for 30 minutes at 2608℃. Dry powder forms of carbomer do not support the growth of molds and fungi. In contrast, microorganisms grow well in unpreserved aqueous dispersions, and therefore an antimicrobial preservative such as 0.1% w/v chlorocresol, 0.18% w/v methylparaben–0.02% w/v propylparaben, or 0.1% w/v thimerosal should be added. The addition of certain antimicrobials, such as benzalkonium chloride or sodium benzoate, in high concentrations (0.1% w/v) can cause cloudiness and a reduction in viscosity of carbomer dispersions. Aqueous gels may be sterilized by autoclaving with minimal changes in viscosity or pH, provided care is taken to exclude oxygen from the system, or by gamma irradiation, although this technique may increase the viscosity of the formulation. At room temperature, carbomer dispersions maintain their viscosity during storage for prolonged periods. Similarly, dispersion viscosity is maintained, or only slightly reduced, at elevated storage temperatures if an antioxidant is included in the formulation or if the dispersion is stored protected from light. Exposure to light causes oxidation that is reflected in a decrease in dispersion viscosity. Stability to light may be improved by the addition of 0.05–0.1% w/v of a water-soluble UV absorber such as benzophenone-2 or benzophenone-4 in combination with 0.05–0.1% w/v edetic acid.
Carbomer powder should be stored in an airtight, corrosionresistant container and protected from moisture. The use of glass, plastic, or resin-lined containers is recommended for the storage of formulations containing carbomer.

Current market and forecast

The global demand on acrylic resin approached roughly US $ 14.5 billion in 2011. With an annual growth rate of 4 - 5 % , the acrylic resin market is expected to reach US $ 16.6 billion by 2014 and US$22 billion by 2020. Acrylic resins are used in a wide range of applications for the outstanding chemical characteristics and unique aesthetic properties. Currently, the strongest demand comes from automotive and medical device markets, and paints & coatings, adhesive & sealant and construction & architecture are the major application markets for acrylic resin.

Formulae

Acrylic resin is a general term for any one of the plastics (resin) generated through chemical reaction by applying polymerization initiator and heat to a monomer.
The chemical name for the resin produced from the methyl methacrylate monomer (MMA) is polymethyl methacrylate (PMMA). MMA is a transparent and colorless fluid substance.One of the main characteristic features of PMMA is its high transparency. With its high weather resistance, it has been known to last over 30 years, it does not easily turn yellow or crumble when exposed to sunlight. Polymethyl methacrylate is used not only for transparent windows in aquariums but also for various items such as signboards in places like convenience stores, taillights of automobiles, bathtub liners, sinks, cell phone display screens, backlight optical waveguides for liquid crystal displays (LCD) and so on.

Advantages

The advantages of acrylic resins are :
Better stain protection (wash ability)
Water resistance
Better adhesion
Better blocking ('strap down')
Resist cracking and blistering better
Resistance to alkali cleaners.

Incompatibilities

Carbomers are discolored by resorcinol and are incompatible with phenol, cationic polymers, strong acids, and high levels of electrolytes. Certain antimicrobial adjuvants should also be avoided or used at low levels. Trace levels of iron and other transition metals can catalytically degrade carbomer dispersions.
Certain amino-functional actives form complexes with carbomer; often this can be prevented by adjusting the pH of the dispersion and/or the solubility parameter by using appropriate alcohols and polyols.
Carbomers also form pH-dependent complexes with certain polymeric excipients. Adjustment of pH and/or solubility parameter can also work in this situation.

Regulatory Status

Included in the FDA Inactive Ingredients Database (oral suspensions, tablets; ophthalmic, rectal, topical, transdermal preparations; vaginal suppositories). Included in nonparenteral medicines licensed in Europe. Included in the Canadian List of Acceptable Nonmedicinal Ingredients.

Global( 510)Suppliers
Supplier Tel Email Country ProdList Advantage
Hubei Xindesheng Material Technology Co., Ltd.
+8618971041571 vickyzhao@whdschem.com China 174 58
Yujiang Chemical (Shandong) Co.,Ltd.
+86-17736087130 +86-18633844644 catherine@yjchem.com.cn China 985 58
Wuhan Fortuna Chemical Co.,Ltd
+8618007136271 hk@fortunachem.com China 5998 58
Hebei Yime New Material Technology Co., Ltd.
+86-66697723 +86-17703311139 admin@china-yime.com China 563 58
Hebei Chuanghai Biotechnology Co,.LTD
+86-13131129325 sales1@chuanghaibio.com China 5893 58
Hebei Weibang Biotechnology Co., Ltd
+8617732866630 bess@weibangbio.com China 18154 58
Hebei Kingfiner Technology Development Co.Ltd
+86-15532196582 +86-15373005021 lisa@kingfinertech.com China 3010 58
Anhui Ruihan Technology Co., Ltd
+8617756083858 daisy@anhuiruihan.com China 973 58
Shaanxi TNJONE Pharmaceutical Co., Ltd
+8618092446649 sarah@tnjone.com China 1143 58
Hebei Longbang Technology Co., LTD
+86-18633929156 +86-18633929156 admin@hblongbang.com China 941 58

Related articles

  • Application of Poly(acrylic acid)
  • Poly(acrylic acid) (PAA) is a high molecular weight polymer with good water solubility made by polymerisation of acrylic monom....
  • Apr 19,2024
  • What is Poly(acrylic acid)?
  • Poly(acrylic acid) or PAA (CAS number 9003-1-04) is a type of polymer. The monomer of poly(acrylic acid) is Acrylic Acid.
  • Jul 23,2020

View Lastest Price from Poly(acrylic acid) manufacturers

Image Update time Product Price Min. Order Purity Supply Ability Manufacturer
Polyacrylic Acid  pictures 2024-11-24 Polyacrylic Acid
9003-01-4
US $3.60 / kg 1kg ≥99% 3000tons/month Hebei Andu Technology Com.,Ltd
Poly(acrylic acid) pictures 2024-11-24 Poly(acrylic acid)
9003-01-4
US $100.00-75.00 / kg 1kg 99% 5000 HEBEI SHENGSUAN CHEMICAL INDUSTRY CO.,LTD
Carbomer pictures 2024-11-22 Carbomer
9003-01-4
US $80.00 / kg 1kg 99 5000 Hebei Zhuanglai Chemical Trading Co.,Ltd
  • Poly(acrylic acid) pictures
  • Poly(acrylic acid)
    9003-01-4
  • US $100.00-75.00 / kg
  • 99%
  • HEBEI SHENGSUAN CHEMICAL INDUSTRY CO.,LTD
  • Carbomer pictures
  • Carbomer
    9003-01-4
  • US $80.00 / kg
  • 99
  • Hebei Zhuanglai Chemical Trading Co.,Ltd

Poly(acrylic acid) Spectrum

POLYACRYLIC ACID 250,000 POLYACRYLIC ACID 25,000 Polyacrylic Acid (Sodium) Polyacrylicacidextrapure approx. M.W. 240,000 approx. M.W. 5,000 approx. M.W. 2,000 Poly(acrylic acid), 63 wt% solution in water Poly(acrylic acid), sec. stand., aver. MW 1,080,000, aver. MN 135,000 Polyacrylic acid(PAA) POLYACRYLICNANOPARTICLES POLYACRYLICACIDANDITSSODIUMSALT Polyacrylsure, auch schwach vernetzt und Natriumsalze POLY(ACRYLIC ACID) (SOLID) (MED. M.WT.) POLY(ACRYLIC ACID) (SOLID) (HIGH M.WT.) POLY(ACRYLIC ACID): (25% AQ.) Propenoic acid polymer poly(acrylic acid) solution Acrylic acid polymers: (Acrylic polymer or resin) Acrylic resin,modified Acrylic resin emulsion neutral No.1 Polyacrylate emulsion Assistant tanning agent Poly(acrylic acid) average Mv ~4,000,000 Poly(acrylic acid) average Mv ~450,000 Poly(acrylic acid) solution average Mw ~100,000, 35 wt. % in H2O Poly(acrylic acid) solution average Mw ~2,000, 50 wt. % in H2O, electronic grade Poly(acrylic acid) solution average Mw ~250,000, 35 wt. % in H2O Anti-Xeroderma pigmentosum, complementary group A Anti-XP1 Anti-XPAC StratoSpheres? PL-REM (Acrylate) resin Xeroderma pigmentosum group A-complementing protein XPAC Carbomer,Carbopol Polyacrylic resin Ⅰ DNA repair protein complementing XP-A cells Poly(acrylic acid) solution, 25 wt. % in water, MW ≈ 240,000 Poly(acrylic acid) 50% solution Poly(acrylic acid), 63 wt. % Aqueous Solution antiprexa arasorb750 arasorbs100f aron arona10h atacticpoly(acrylicacid) carbopol960 carbopol961 carboset515 carbosetresinno.515 carpolene colloids119/50 dispexc40 g-cure good-ritek37 good-ritek-700 good-ritek702 good-ritek727