ChemicalBook > Product Catalog >Inorganic chemistry >industrial gases >Hydrogen

Hydrogen

Hydrogen Structure
CAS No.
1333-74-0
Chemical Name:
Hydrogen
Synonyms
H2;Dihydrogen;Wasserstoff;Liquid hydrogen;Molecular hydrogen;HYDROGE;PROTIUM;HYDROGEN;diprotium;o-Hydrogen
CBNumber:
CB7686195
Molecular Formula:
H2
Molecular Weight:
2.02
MOL File:
1333-74-0.mol
MSDS File:
SDS
Modify Date:
2024/5/27 15:25:29

Hydrogen Properties

Melting point −259.2 °C(lit.)
Boiling point −252.8 °C(lit.)
Density 0.0899
vapor density 0.07 (21 °C, vs air)
vapor pressure Critical temperature is - 239.9 °C; noncondensible above this temperature
Flash point <-150°C
solubility slightly soluble in H2O
pka 35(at 25℃)
form colorless gas
color colorless gas; flammable
Odor Odorless gas
explosive limit 74.2%
Water Solubility 0.00017 g/100 mL
Merck 13,4813
Dielectric constant 1.0(100℃)
Stability Stable. Highly flammable. Readily forms explosive mixtures with air. Upper (U.K.) composition limit for use of a nitrogen/hydrogen mixture in the open lab is 5.7% hydrogen.
CAS DataBase Reference 1333-74-0(CAS DataBase Reference)
NIST Chemistry Reference Hydrogen(1333-74-0)
EPA Substance Registry System Hydrogen (1333-74-0)

SAFETY

Risk and Safety Statements

Symbol(GHS) 
GHS02,GHS04
Signal word  Danger
Hazard statements  H220-H280
Precautionary statements  P210-P377-P381-P410+P403
Hazard Codes  F+
Risk Statements  12
Safety Statements  9-16-33
RIDADR  UN 1950 2.1
WGK Germany  -
RTECS  MW8900000
4.5-31
Autoignition Temperature 500 to 590 °C
DOT Classification 2.1 (Flammable gas)
HazardClass  2.1
Toxicity TLV-TWA (ACGIH) None established; simple asphyxiant
NFPA 704
4
3 0

Hydrogen price More Price(1)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich(India) 769088 Hydrogen Messer? CANgas, 99.999% 1333-74-0 1L ₹6941.9 2022-06-14 Buy
Product number Packaging Price Buy
769088 1L ₹6941.9 Buy

Hydrogen Chemical Properties,Uses,Production

Description

Hydrogen is colorless, odorless, tasteless, flammable, and nontoxic. It exists as a gas at ambient temperatures and atmospheric pressures. It is the lightest gas known, with a density approximately 0.07% that of air. Hydrogen is present in the atmosphere occurring in concentrations of only about 0.5 ppm by volume at lower altitudes.

Chemical Properties

Hydrogen,H2, is a tasteless,colorless, odorless gas that may be liquified by cooling under pressure. Hydrogen is used in welding, in the production of ammonia, methanol, and other chemicals, for the hydrogenation of oil and coal,and for the reduction of metallic oxide ores.It is obtained by the dissociation of water and as a by-product in the electrolysis of brine solutions. Molecular hydrogen at ambient temperature is relatively innocuous to most metals.However, atomic hydrogen is detrimental to most metals.

Physical properties

Hydrogen’s atom is the simplest of all the elements, and the major isotope (H-1) consists ofonly one proton in its nucleus and one electron in its K shell. The density of atomic hydrogenis 0.08988 g/l, and air’s density is 1.0 g/l (grams per liter). Its melting point is –255.34°C,and its boiling point is –252.87°C (absolute zero = –273.13°C or –459.4°F). Hydrogen hastwo oxidation states, +1 and –1.

Isotopes

The major isotope of hydrogen has just one proton and no neutrons in itsnucleus (1H-1).Deuterium (2D or H-2) has a nucleus consisting of one proton plus one neutron. Tritium (3T or H-3), another variety of heavy water (TOT),has nuclei consisting of one proton and two neutrons.

Origin of Name

Hydrogen was named after the Greek term hydro genes, which means “water former.”

Characteristics

H2 is a diatomic gas molecule composed of two tightly joined atoms that strongly sharetheir outer electrons. It is an odorless, tasteless, and colorless gas lighter than air. Hydrogenis included in group 1 with the alkali metals because it has an oxidation state of +1 as dothe other alkali metals. Experiments during the 1990s at the Lawrence Livermore NationalLaboratory (LLNL), in Livermore, California, lowered the temperature of H2 to almostabsolute zero. By exploding gunpowder in a long tube that contained gaseous hydrogen, thegas that was under pressure of over one million times the normal atmospheric pressure wascompressed into a liquid. This extreme pressure on the very cold gas converted it to liquidhydrogen (almost to the point of solid metallic hydrogen), in which state it did act as a metaland conduct electricity.Hydrogen gas is slightly soluble in water, alcohol, and ether. Although it is noncorrosive,it can permeate solids better than air. Hydrogen has excellent adsorption capabilities in theway it attaches and holds to the surface of some substances. (Adsorption is not the same asabsorption with a “b,” in which one substance intersperses another.

Uses

In oxy-hydrogen blowpipe (welding) and limelight; autogenous welding of steel and other metals; manufacture of ammonia, synthetic methanol, HCl, NH3; hydrogenation of oils, fats, naphthalene, phenol; in balloons and airships; in metallurgy to reduce oxides to metals; in petroleum refining; in thermonuclear reactions (ionizes to form protons, deuterons (D) or tritons (T)). liquid hydrogen used in bubble chambers to study subatomic particles; as a coolant.

Definition

ChEBI: An elemental molecule consisting of two hydrogens joined by a single bond.

Production Methods

Hydrogen gas may be produced by several methods. It is commerciallyobtained by electrolysis of water. It also is made industrially by the reactionof steam with methane or coke:
CH4 + H2O → CO + 3H2
C + H2O → CO + H2
CO + H2O → CO2 + H2
The reactions are carried out at about 900 to 1,000°C and catalyzed by nick-el, nickel-alumina, or rhodium-alimina catalysts. In the laboratory, hydrogenmay be prepared by the reaction of zinc or iron with dilute hydrochloric or sulfuric acid:
Zn + 2HCl → ZnCl2 + H2
It also may be prepared by passing water vapor over heated iron:
H2O + Fe → FeO + H2
Also, it can be generated by reaction of metal hydrides with water:
CaH2 + 2H2O → Ca(OH)2 + 2H2
Another method of preparation involves heating aluminum, zinc, or otheractive metals in dilute sodium hydroxide or potassium hydroxide:
2Al + 6NaOH → 2Na3AlO3 + 3H2
Zn + 2KOH → K2ZnO2 + H2

General Description

Hydrogen is a colorless, odorless gas. Hydrogen is easily ignited. Once ignited Hydrogen burns with a pale blue, almost invisible flame. The vapors are lighter than air. Hydrogen is flammable over a wide range of vapor/air concentrations. Hydrogen is not toxic but is a simple asphyxiate by the displacement of oxygen in the air. Under prolonged exposure to fire or intense heat the containers may rupture violently and rocket. Hydrogen is used to make other chemicals and in oxyHydrogen welding and cutting.

Air & Water Reactions

Highly flammable.

Reactivity Profile

Finely divided platinum and some other metals will cause a mixture of Hydrogen and oxygen to explode at ordinary temperatures. If a jet of Hydrogen in air impinges on platinum black the metal surface gets hot enough to ignite the gases, [Mellor 1:325(1946-1947)]. Explosive reactions occur upon ignition of mixtures of nitrogen trifluoride with good reducing agents such as ammonia, Hydrogen, Hydrogen sulfide or methane. Mixtures of Hydrogen, carbon monoxide, or methane and oxygen difluoride are exploded when a spark is discharged, [Mellor 2, Supp. 1:192(1956)]. An explosion occurred upon heating 1'-pentol and 1''-pentol under Hydrogen pressure. Hydrogen appears that this acetylenic compound under certain conditions suddenly breaks down to form elemental carbon, Hydrogen, and carbon monoxide with the release of sufficient energy to develop pressures in excess of 1000 atmospheres, [AIChE Loss Prevention, p1, (1967)].

Hazard

Hydrogen gas is very explosive when mixed with oxygen gas and touched off by a spark or flame. Many hydrides of hydrogen are dangerous and can become explosive if not stored and handled correctly. Many organic and hydrocarbon compounds are essential for life to exist, but just as many are poisonous, carcinogenic, or toxic to living organisms.

Health Hazard

Hydrogen is practically nontoxic. In high concentrations this gas is a simple asphyxiant, and ultimate loss of consciousness may occur when oxygen

Fire Hazard

EXTREMELY FLAMMABLE. Will be easily ignited by heat, sparks or flames. Will form explosive mixtures with air. Vapors from liquefied gas are initially heavier than air and spread along ground. CAUTION: Hydrogen (UN1049), Deuterium (UN1957), Hydrogen, refrigerated liquid (UN1966) and Methane (UN1971) are lighter than air and will rise. Hydrogen and Deuterium fires are difficult to detect since they burn with an invisible flame. Use an alternate method of detection (thermal camera, broom handle, etc.) Vapors may travel to source of ignition and flash back. Cylinders exposed to fire may vent and release flammable gas through pressure relief devices. Containers may explode when heated. Ruptured cylinders may rocket.

Flammability and Explosibility

Hydrogen is a highly flammable gas that burns with an almost invisible flame and low heat radiation. Hydrogen forms explosive mixtures with air from 4 to 75% by volume. These explosive mixtures of hydrogen with air (or oxygen) can be ignited by a number of finely divided metals (such as common hydrogenation catalysts). In the event of fire, shut off the flow of gas and extinguish with carbon dioxide, dry chemical, or halon extinguishers. Warming of liquid hydrogen contained in an enclosed vessel to above its critical temperature can cause bursting of that container.

Agricultural Uses

Hydrogen, a non-metallic element, is a colorless odorless, tasteless gas occurring in water combined with oxygen, and in all organic compounds (for example, hydrocarbons and carbohydrates). It is produced by electrolysis of water and is used in the Haber-Bosch process for producing ammonia - a major raw material for nitrogenous fertilizers.
Large quantities of hydrogen are utilized in catalytic hydrogenation of unsaturated vegetable oils to make solid fats and petroleum refining. Large quantities of hydrogen are also used as a propulsion fuel for rockets in conjunction with oxygen or fluorine. Being flammable, it is used with helium for filling balloons and airships.
Hydrogen is the lightest of all the elements holding position in Group 1 of the Periodic Table. It is abundant in the universe. There are three hydrogen isotopes namely hydrogen- 1, deuterium and tritium. The first two are naturally occurring stable isotopes and the third being radioactive, is made artificially.

Materials Uses

Hydrogen gas is noncorrosive and may be contained at ambient temperatures by most common metals used in installations designed to have sufficient strength for the working pressures involved. Equipment and piping built to use hydrogen should be selected with consideration of the possibility of embrittlement, particularly at elevated pressures and temperatures above 450°F (232°C). A Nelson curve should be consulted to select the proper alloys.
Metals used for liquid hydrogen equipment must have satisfactory properties at very low operating temperatures. Ordinary carbon steels lose their ductility at liquid hydrogen temperatures and are considered too brittle for this service. Suitable materials include austenitic chromium-nickel steels (stainless steels), copper, copper silicon alloys, aluminum, Monel, and some brasses and bronzes.

storage

hydrogen cylinders should be clamped or otherwise supported in place and used only in areas free of ignition sources and separate from oxidizers. Expansion of hydrogen released rapidly from a compressed cylinder will cause evolution of heat due to its negative Joule-Thompson coefficient.

Purification Methods

It is usually purified by passing through a suitable absorption train of tubes. Carbon dioxide is removed with KOH pellets, soda-lime or NaOH pellets. Oxygen is removed with a “De-oxo” unit or by passage over Cu heated to 450-500o and Cu on Kieselguhr at 250o. Passage over a mixture of MnO2 and CuO (Hopcalite) oxidises any CO to CO2 (which is removed as above). Hydrogen can be dried by passage through dried silica-alumina at -195o, through a dry-ice trap followed by a liquid-N2 trap packed with glass wool, through CaCl2 tubes, or through Mg(ClO4)2 or P2O5. Other purification steps include passage through a hot palladium thimble [Masson J Am Chem Soc 74 4731 1952], through an activated-charcoal trap at -195o, and through a non-absorbent cotton-wool filter or small glass spheres coated with a thin layer of silicone grease. Potentially VERY EXPLOSIVE in air.

Incompatibilities

Hydrogen is a reducing agent and reacts explosively with strong oxidizers such as halogens (fluorine, chlorine, bromine, iodine) and interhalogen compounds.

Waste Disposal

Excess hydrogen cylinders should be returned to the vendor. Excess hydrogen gas present over reaction mixtures should be carefully vented to the atmosphere under conditions of good ventilation after all ignition sources have been removed. For more information on disposal procedures, see Chapter 7 of this volume.

Global( 110)Suppliers
Supplier Tel Country ProdList Advantage Inquiry
Meghmani Finechem Ltd +91-7929709600 +91-7929709600 Ahmedabad, India 9 58 Inquiry
TGV SRAAC Ltd. +91-9848010131 +91-9848010131 AndhraPradesh, India 18 58 Inquiry
Bodal Chemicals Ltd +91-9909950857 +91-9825034567 Gujarat, India 132 58 Inquiry
Primo Chemicals Ltd. +91-1724072543 +91-1724072543 Punjab, India 3 58 Inquiry
Century Rayon +91-9819567397 +91-9920995568 Maharashtra, India 5 58 Inquiry
DCM Shriram Ltd +91-1142100200 +91-9821139877 New Delhi, India 5 58 Inquiry
The Andhra Sugars Limited +91-9346009958 +91-8819221423 AndhraPradesh, India 11 58 Inquiry
Vadilal Chemicals Limited +91-7948936937 +91-7203030735 Gujarat, India 39 58 Inquiry
INOX Air Products Pvt Ltd +91-8097310308 +91-9323937333 Maharashtra, India 5 58 Inquiry
Lords Chloro Alkali Limited +91-9871174015 +91-9818832747 New Delhi, India 4 58 Inquiry

Related articles

  • Hydrogen:Chemistry,Preparation,Uses
  • Under normal conditions on Earth, elemental hydrogen exists as the diatomic gas, H2. Yet, hydrogen gas is very rare in the Ear....
  • Feb 20,2023
  • Hydrogen-Hazard and Toxicity
  • Hydrogen,H2, is a tasteless,colorless, odorless gas that may be liquified by cooling under pressure. Hydrogen is used in weldi....
  • Sep 9,2019

Hydrogen Spectrum

hydrogen,compressed hydrogen,highpurity Compressed hydrogen Hydrogen,pure (99.99%) Hydrogen molecule DEUTERIUM (D, 99.8%) Hydrogen Messer(R) CANgas, 99.999% diprotium PROTIUM hydrogen,refrigeratedliquid(cryogenicliquid) hydrogengas molecularhydrogen o-Hydrogen p-Hydrogen EXPLOSIMETRY STANDARD EX-3 HYDROGEN GAS MIX HYDROGEN-PURE- HYDROGEN 1X14L HYDROGEN, 99.99+% HYDROGEN, PRESSURE TIN WITH 1 L WASSERSTOFF 3,0 REINHEIT 99,9 P. hydrogen, refrigerated liquid Industrial hydrogen Hydrogen ISO 9001:2015 REACH H2 Liquid hydrogen Wasserstoff Dihydrogen Molecular hydrogen HYDROGE 1333-74-0 133-74-0 1H2 Synthetic Reagents Compressed and Liquefied Gases Hydrogen Chemical Synthesis Electronic Chemicals Materials Science Micro/NanoElectronics Specialty Gases Synthetic Reagents Compressed and Liquefied Gases HU - HZGas Standards Alphabetic H Pure Gases SCOTTY Gases refrigerants Inorganics Chemical Synthesis Compressed and Liquefied GasesMicro/Nanoelectronics Electronic Chemicals Gases Synthetic Reagents